Dipl.-Ing. (FH) Markus Öhlenschläger

Material und Festigkeitsklassen

Zuordnung von materialbezogenen Eigenschaften in Bauteilen

Für die Bauteile in ViCADo erfolgt die Zuordnung eines Materials in den Eigenschaften der Bauteile bzw. in den Eigenschaften einer Schicht bei mehrschichtigen Bauteilen. Über die Auswahl eines Materials wird z.B. eine Wand mit dem Typ "Mauerwerk" weiter als Ziegel- oder Kalksandsteinwand spezifiziert. Als weiterführende Detaillierung folgt in ViCADo die Auswahl einer Festigkeitsklasse. Somit ist ein Bauteil materialbezogen eindeutig beschrieben. Darüber hinaus wird in der mb WorkSuite die Festigkeitsklasse bis in die Verwendungen in der BauStatik oder in MicroFe weitergeführt oder auch als IFC-Property im BIM-Modellaustausch genutzt.

Bild 1. Auswahl von Material und Festigkeit über die Eigenschaften der mehrschaligen Wandbauteile

Eigenschaften von Bauteilen

Jedes Objekt bzw. jedes Bauteil in einem virtuellen Gebäudemodell besitzt einen Umfang von Eigenschaften. Diese Eigenschaften gliedern sich in geometrische und nicht-geometrische Informationen. Geometrische Informationen werden aus den Abmessungen des Bauteils abgeleitet, wie z.B. das Volumen oder die Oberflächen. Die nicht-geometrischen Informationen werden in der Regel durch die Planenden in das Modell eingefügt, wie z.B. die Typisierung in "Wand" oder "Decke". Material- und Festigkeitsinformationen gehören ebenfalls zu den nicht-geometrischen und werden zum Teil von unterschiedlichen Projektbeteiligten zu unterschiedlichen Zeiten in das Modell eingepflegt. Typischerweise legt der Entwurfsverfasser in frühen Planungsphasen das Material fest und im Zuge der Tragwerksplanung ergänzt der Tragwerksplaner die Festigkeitsklasse sowie weitere Informationen, wie z.B. Expositionsklassen oder Bewehrungsgrade.

Bild 2. ViCADo-Stammdaten zur Verwaltung der Materialinformationen

Material

Jedem Objekt bzw. jedem Bauteil wird über die Eigenschaften ein Material zugeordnet. Neben der grundsätzlichen Zuordnung des Namens des gewählten Materials steuert das Material auch die Darstellung der Bauteile und Objekte in den Sichten des Modells.

Auswahl Material

Die Auswahl des Materials erfolgt im gleichnamigen Kapitel "Material/Querschnitt" der Eigenschaften. Alle verfügbaren Materialien werden in Ordner sortiert angeboten. Mit der Installation der mb WorkSuite steht in ViCADo direkt eine umfangreiche Liste an Materialien zur Auswahl bereit. Verwaltet werden diese über die in ViCADo integrierten ViCADo-Stammdaten, da Materialien in einem Projekt nur für die ViCADo-Modelle verwendet werden. Die Liste der Materialien kann beliebig verändert, erweitert oder reduziert werden.

Bild 3. Auswahl des Materials in einem Bauteil

ViCADo-Stammdaten

Über das Systemmenü eines geöffneten ViCADo-Modells stehen die Materialien zur Bearbeitung bereit. Der Dialog "Stammdaten" bietet alle Materialien zur Bearbeitung an. Mit der Vorauswahl in der linken Spalte wird das gewünschte Material in der rechten Spalte ausgewählt. Mit einem Klick auf die rechte Maustaste kann ein neues Material erzeugt oder ein bestehendes Material kopiert werden.

Steuerung der Darstellung

Das gewählte Material in einem Bauteil bestimmt die Darstellung sowohl in 2D-Sichten, wie Drauf- oder Schnittsichten, als auch in 3D-Visualisierungssichten. Wie in Bild 3 erkennbar, liefert das Material eine Textur sowie eine Schraffur. Im Standardfall verwendet ViCADo zur Zeichnung der Bauteile die materialabhängigen Einstellungen, siehe Bild 4.

Bild 4. Steuerung der materialabhängigen Schraffur

Bild 5. Auswahl der Festigkeitsklasse für Mauerwerkswände

Festigkeitsklasse

Die Auswahl einer Festigkeitsklasse ergänzt die Materialauswahl und stellt keinen Ersatz für das Material dar. Somit wird im klassischen Planungsablauf das Material festgelegt, z.B. "KS", und in der Folge wird diese Auswahl um die Festigkeitsklasse, z.B. "KS-XL 10/DM", präzisiert (Bild 5).

Allgemein Darstellung	Material/(Quersch n relement	iitt Versc Trags	nneidung truktur
Auswertung	Info	Attrib	oute Si	chtbarkeit
Schicht 01				
Dicke	0.0500 ~		Schichtdie	ke
∆Hunten	0.0000	m	Differenzł	röhe unten
Material	Betonfertigteil			
tragend	ja	\sim		
Funktion	Innenschale	\sim		
Bezug Höhe	UKRD	\sim		
Bauart	Stahlbetonbau	\sim		
Klasse	🔽 Stahlbetoni	oau		
Schicht 02	Stahlbau			📮 🗼 E
Dicke	Mauerwerk	sbau	Schichtdie	ke
∆H _{unten}	Holzbau	iöhe unten		
Material	OHNE			

Bild 6. Auswahl der Bauart

Auswahl der Bauart

Damit eine Festigkeitsklasse gewählt werden kann, ist eine passende Bauart auszuwählen. Dies wird zum einen notwendig, da die Material-Definitionen in ViCADo ohne Bezug zu existierenden Materialien erfolgt. Zum anderen wäre z.B. die Auswahl "Holzbau" alleine nicht ausreichend, da besonders hier vielfältige Möglichkeiten der Ausführung bestehen. Auf die Auswahl "Holzbau" folgt die Frage "Konstruktion", um weiter zwischen "Vollholz" und "Brettsperrholz" zu differenzieren. Die Möglichkeiten in der Auswahl "Klasse" werden in Abhängigkeit zu den Entscheidungen bei "Bauart" und "Konstruktion" angepasst.

Im Vergleich zum Material erfolgt die Verwaltung der Festigkeitsklassen in den Projekt-Stammdaten. Dies ermöglicht den reibungslosen Austausch von Informationen zwischen den Anwendungen innerhalb der mb WorkSuite.

Für mehrschalige Bauteile wie Decken und Wände erfolgt die Auswahl Material, Bauart sowie Festigkeitsklasse je Schicht. Die Auswahl der Festigkeitsklasse ist unabhängig von der Entscheidung "tragend" möglich. Soll keine Festigkeitsklasse ausgewählt werden, ist bei der Bauart "OHNE" auszuwählen.

Allgemein	Ma	terial/(Juerschni	tt Vers	chneid	ung	
Darstellun	Darstellung		relement	Irag	Tragstruktur		
Auswertung	In	fo	Attribu	ute S	Sichtbarke		
Klasse	C 25/30)				[]	
Schicht 04					Ę	÷ E	
Dicke	0.1000	~]	Schichtd	icke		
ΔH _{unten}		0.0000	m	Differenz	zhöhe i	unten	
Material	Dämmu		[]				
tragend	nein					\sim	
Funktion	Dämmu	Dämmung					
Bezug Höhe	OKRD					\sim	
Bauart	OHNE					\sim	
Information						Ξ	
Bezeichn	١	Nert	Ei	inheit			
Gesamtdicke	Gesamtdicke			m			
Bezugslinie						Br	

Bild 7. Auswahl "OHNE" bei Bauart

Bild 8. Auswertung und Dokumentation mit Beschriftungen und Listensichten

Projekt-Stammdaten

Die Verwaltung der Projekt-Stammdaten wird über das Register "Projekt" über den ProjektManager erreicht. Die Projekt-Stammdaten beinhalten neben den Festigkeitsklassen noch viele weitere Informationen, wie z.B. Profilwerte für den Stahlbau oder Teilsicherheits- und Kombinationsbeiwerte zur Bildung von Bemessungsschnittgrößen.

Derrendation Start Tabelle An	scht.			Projek	-Samindaten «Diger	e Projekte	o-mbinar #22-	24 - Grafiken VJ	- Stammdotenverwal	bung 2034	- 0
import Deport Lössfren Köpieren in Biord Tabole	Ramm trage	daten 1		Nisch I oben U Arorth	Nach Valen ung						
Teiwerte Alu-Profile		a seco	المرام		and knowledge	y	ατ	fck	fck.cube	fen_	Eigenschaften
Profile Holz Bewehrung Schruber Soundwinde Material	1	0	6	22/25	28	(N/m3] 35	[1.0E-5/80]	[N/mm7] 12	[N/mm7] 15	Ninn	Algemein Festiginiten Sorrefges
a Teton	1	100	6	16,00	68	15	10	16	20		Alosten
15-EN1992-1-1-BETON	1	- 24		30.25	121	25	10	10	25	_	✓ Stormalization
111 21N-EN1922-1-1-1130W	1		c	15/20	10	25	10	35	30		y 25.00 kN/m ⁸ Wichte
- CNORM-81952-1-1-8ETON	5	2	6	10/17	21	25	10	10	37		ort 10.00 1.06-6VK Temperaturdehnzahl
ESN-EN1992-1-1-BETON	6	20	c	31/41	68	15	10		45	_	Druskfestigkeiten u
IIII UNI-EN1992-1-1-BETCN	7	0	c	40/50	22	25	10	40	50		Fig. 30 N/mm ⁴ char. Zylinderdruckfe.
EB 071 52-101-2003		0	c	45,55	R	25	10	45	65		fun 35 Namm ² Mittles Doublestipk
CT 63 1330-2012 Extensibl Holz Maconverb Saint	4	21	c	50,60	21	25	10	50	60		austerioketen =
	20	8	c	15.67	R	25	10	55	67	_	fram 2.90 Nemm ² Mittelwert
	13	2	c	60/75	121	25	10	60	75	_	Felicitids 2.00 N/mm ² 5%-Quantil
	12	120	с	70/85	121	25	10	70	85	- 1	Obmeteren Weiwerken Hills
Auminium	23	8	c	80/35	191	25	10	82	95	_	Planeterite
	74	8	c	90/105	8	25	10	30	105	- 1	Allactorin
	15	2	c	100/175	2	25	10	892	115		Jahain L1 Normaliston Jahain
	16	10	£C.	12/13		20	8	12	17		y [kN/m ²] Wichte
	17	88	ic	16/18		20	8	16	18		o ₇ [1.0E-6/K]Temperaturdehnzahl
	18	9	1C	20/22		20	8	20	22		Druckfestigkeiten
	79	8	10	25/20		20	8	25	28		L ₂ [N/mm ²] charakteristische Zylinderdruckfestigkeit
	20	2	10	30/33		20	8	30	33		des Betons 1. Bitrauel des attaintietes Ministrations Mantalaises
	23	121	10	35/38		20	0	35	28		des Betons
											t Pl/mm ² 1Mittelwert der Zvfinderdruckfestiskeit des

Bild 9. Projekt-Stammdaten mit Beton-Festigkeitsklassen

Alle Anwendungen der mb WorkSuite greifen gemeinsam und einheitlich auf die Projekt-Stammdaten zu. Somit bilden diese eine ideale Grundlage für einen guten und sicheren Informationsaustausch. Wird im Bauteil in ViCADo z.B. die Festigkeitsklasse "NH C24" gewählt, greift auch MicroFe, nach Verwendung eines Berechnungsmodells aus dem StrukturEditor, auf denselben und einheitlichen Datensatz zurück. Übertragungsfehler können somit nicht entstehen.

Dokumentation

Alle Informationen, die über die Eigenschaften in den Objekten und Bauteilen verwaltet werden, können auf unterschiedlichen Wegen dokumentiert werden.

Beschriftungen

In den 2D-Drauf- und Schnittsichten können die nichtgeometrischen Informationen über Beschriftungen in die Plangestaltungen integriert werden. Hierbei helfen die entsprechenden Variablen, um ein hohes Maß an Variabilität zu erreichen (Bild 8 rechts).

Für mehrschichtige Bauteile sind die unterschiedlichen Variablen zu beachten, um wahlweise z.B. gezielt die Festigkeitsklasse einzelner Schichten oder eine "umhüllende" Ausgabe aller Festigkeiten zu erreichen.

Listensichten

ViCADo bietet mit den Listensichten eine gute und leicht individualisierbare Möglichkeit, Auswertungen für ein virtuelles Gebäudemodell zu erstellen. Die Variablen, die für Beschriftungen genutzt werden, stehen auch für die Verwendung in Listensichten zur Verfügung (Bild 8 links).

Neben der Auswertung des virtuellen Gebäudemodells liefert eine Listensicht auch eine ideale Möglichkeit, das Gebäudemodell zu kontrollieren. Wurden z.B. versehentlich unterschiedliche Materialien oder Festigkeitsklassen ausgewählt, liefert eine Listensicht mit wenig Aufwand die Bauteile mit unterschiedlichen Eigenschaften.

Strukturmodell

Innerhalb des ViCADo-Modells liegt sowohl das Architekturmodell als auch das Strukturmodell vor. Jedes Bauteil aus dem Architekturmodell wird als Strukturelement im Strukturmodell repräsentiert. Damit keine redundanten Arbeitsschritte notwendig werden, stehen die Entsprechungen in den jeweiligen Modellen dauerhaft in Verbindung.

Weiterführung in das Strukturelement

Wird im Strukturelement, Kapitel "Allgemein" entschieden, dass die Informationen zu "Material und Festigkeit" mit "bauteilorientiert" aus dem Bauteil des Architekturmodells übernommen werden, verhält sich das Strukturelement immer passend zum Architekturbauteil.

Allgemein Darstellung	Material/Q	uerschnitt Attribute	Tragstruktur Sichtbarkeit						
Geschoss- une	d Bauteilanbindun	9	Ξ						
Material und F	estigkeitsklasse								
Art	bauteilabhängig	bauteilabhängig ~							
Querschnitt	Querschnitt								
Art	bauteilabhängig 🗸 🗸								
Geometrie	Geometrie								
	an Architektur-B	auteil angleich	en 🗸						
✔ Formschlüssigkeit zu SE-Wänden									
✔ Formschlüssigkeit zu SE-Decken									
Lage im Modell									
	aus Architektur-B	Bauteil überneh	ımen 🗸						
Niveau									
Art	bauteilabhängig		~						
Höhe	~~~~~	~~~~~							

Bild 11. Bauteilabhängige Festigkeitsklasse

Mehrschalige Bauteile

Bei mehrschichtigen Bauteilen erfolgt im Architekturmodell je Schicht die Auswahl von Material und Festigkeitsklasse. Es ist zu beachten, dass an das Strukturelement nur eine Festigkeitsklasse übergeben wird, daher ist bei mehreren tragenden Schichten und unterschiedlichen Festigkeiten eine maßgebende Festigkeitsklasse über die Eigenschaften des Bauteils auszuwählen.

IFC-Austausch

Für einen modellorientierten Informationsaustausch im IFC-Format ist es erforderlich, alle notwendigen Eigenschaften in Form von Properties in Bauteile einzufügen.

Stahlbeton

Für Bauteile oder Schichten aus Stahlbeton nutzt ViCADo zum Transport der Festigkeitsklasse das Property-Set "Pset_ConcreteElementGeneral". Hier werden zusätzlich die gewählten Expositionsklassen abgelegt. Für einen abweichenden Export ins IFC-Schema kann über die Attribute auch eine freie Wahl in Bezug auf die Namenswahl getroffen werden.

Allgemein					
Allgemein		Ŧ			
Pset_SlabCommon					
lstAußenraum Tragendes Bauteil	Nein Ja				
Pset_ConcreteElementGeneral					
Expositionsklasse Betonfestigkeitsklasse	XC1 C 25/30				
ViCADo-DIN 276		Ξ			
Kostengruppe	351	~~~			

Weitere Materialien

Das IFC-Schema bietet nur für den Stahlbetonbau die standardisierten Properties für weiterführende Informationen an. Somit bleibt für z.B. den Holzbau der Weg über die Attribute, Informationen in die exportierte IFC-Datei zu übertragen.

Fazit

Mit der zum Material zusätzlichen Verwaltung einer Festigkeitsklasse werden alle erforderlichen Materialinformationen in einem Bauteil transportiert. Die Festigkeitsklasse ergänzt das Material und spielt sowohl für den Bereich "Architektur", z.B. in Bezug auf Kosten, als auch für die Tragwerksplanung eine entscheidende Rolle.

Dipl.-Ing. (FH) Markus Öhlenschläger mb AEC Software GmbH mb-news@mbaec.de

Preise und Angebote

ViCADo.arc 2024 Entwurf, Visualisierung & Ausführungsplanung

ViCADo.ing 2024 Positions-, Schal- & Bewehrungsplanung

Weitere Informationen unter https://www.mbaec.de/produkte/vicado/

Es gelten unsere Allgemeinen Geschäftsbedingungen. Änderungen und Irrtümer vorbehalten. Alle Preise zzgl. Versandkosten und MwSt. – Hardlock für Einzelplatzlizenz je Arbeitsplatz erforderlich (95,- EUR). Folgelizenz-/Netzwerkbedingungen auf Anfrage. – Stand: Juli 2024

Betriebssysteme: Windows 10 (22H2, 64-Bit), Windows 11 (22H2, 64-Bit), Windows Server 2022 (21H2) mit Windows Terminalserver