Dipl.-Ing. David Hübel

Stahl-Trapezprofile quer zur Dachneigung

Leistungsbeschreibung des BauStatik-Moduls S133.de Stahl-Trapezprofile quer zur Dachneigung

Stahl-Profilbleche sind besonders im Industrie- und Gewerbebau häufig verwendete Bauelemente mit Anwendung in Dach-, Decken- und Wandkonstruktionen. Bei Verwendung als Dachkonstruktion können Trapezprofile in Dachneigung sowie quer zur Dachneigung angeordnet werden. Bei einer Anordnung quer zur Dachneigung ist neben der Tragfähigkeit der Haupttragrichtung die Tragfähigkeit in Schubrichtung nachzuweisen. Mit dem Modul S133.de können für quer zur Dachneigung verlegte Trapezprofile alle notwendigen Nachweise in Haupttragrichtung sowie alle notwendigen Schubfeld-Nachweise geführt werden.

Allgemeines

Trapezprofile sind tragende Bauelemente, welche neben der Funktion des Raumabschlusses die Funktion des Lastabtrags übernehmen. So leiten beispielsweise Profilbleche in Dachlage Wind und/oder Schneelasten in die Unterkonstruktion. Gegenüber herkömmlichen Dacheindeckungen aus Ziegeln können bei dem Einsatz von Trapezblechprofilen aufgrund des geringeren Gewichts leichtere Unterkonstruktionen bzw. größere Spannweiten ausgeführt werden. Wenn die Trapezprofil-Dacheindeckung quer zur Dachneigung verlegt wird, muss neben der Tragfähigkeit um die "starke" Achse die Schubbelastung in Querrichtung des Trapezprofils berücksichtigt werden.

Mit dem Modul S133.de können Trapezprofile mit Belastung um die "starke" Achse sowie unter Schubbelastung nachgewiesen werden.

System

Im Kapitel "System" werden alle erforderlichen Eingaben getroffen, um das statische System zu definieren.

Es sind Ein- und Mehrfeldträger mit ggf. zusätzlichen Kragarmen möglich. Die eingegebenen Feldlängen entsprechen den Stützweiten im statischen System.

Standardmäßig wird an jedem Auflager eine unverschiebliche Lagerung in horizontaler y- und vertikaler z-Richtung angenommen.

Vorbemerkung	System	Wind/Sch	inee	Belastungen		
Material/Querschnitt	Nachweise	Anschlüsse	Ausgabe	Erläuterun	9	
Feldlängen [m]				Ξ	1	
l ₁ 4	12	4.000) 3			
Kragarme				Ξ	2	
J/N vorgeb	en					
Dachneigungswinkel				Ξ	4	
δ	۰					
Auflager				Ξ	5	
Lager 1 ALLE ~	b [am] 6.0					
Auflagerelastizitäten				Ξ	6	
J/N vorgeb	en					
Lasteinflussflächenbreit	9			Ξ	8	
b 1	.000 m	Systemmaß				

Bild 1. Eingabe "System"

Bild 2. Ausgabe "System"

Die Auflager können unabhängig voneinander in ihrer Beweglichkeit in vertikale und/oder horizontale Richtung eingeschränkt werden. Die Beweglichkeit wird durch die Vorgabe von Translations- und/oder Rotationsfedersteifigkeiten angepasst. Ebenfalls kann für jedes Auflager die Breite individuell festgelegt werden. Die Lasteinzugsbreite wird bei der Ermittlung der Wind- und Schneelasten berücksichtigt.

Wind / Schnee

Die Stahltrapez-Dachelemente werden durch Winddruck und -sog sowie Schneelasten beansprucht. Über die Auswahl "Windlastermittlung" im Kapitel "Wind" können Windbeanspruchungen entweder in Abhängigkeit der Gebäudeabmessungen und der geographischen Lage (Windlastzonen) programmseitig nach DIN EN 1991-1-4:2010-12 ermittelt oder manuell vom Anwender vorgegeben werden. Zusätzlich zu den automatisch ermittelten Lasten können Belastungswerte aus einer S031.de-Position übernommen werden.

Die Schneelastermittlung kann analog nach DIN EN 1991-1-4:2010-12 programmseitig ermittelt oder manuell vom Anwender vorgegeben werden. Zusätzlich zu den automatisch ermittelten Lasten können Belastungswerte für Wind- und Schneelasten aus einer S031.de Position übernommen werden.

Vorben Material	nerkung /Querschnitt	System Nachweise	Wind/Sc Anschlüsse	<mark>hnee</mark> Ausgabe	Belastungen Erläuterur	ıg
Windlaste	ermittlung					9
Art	 keine automat Vorgabe Übernah 	isch Geschwindigk me aus S031.d	eitsdruck Ie			2
Schneelas	stermittlung				Ξ	10
Art	keine e automat Vorgabe Übernah	isch Schneelast me aus S031.d	le			
Geograph	nische Daten				Ξ	15
Art	● Eingabe ○ Übernah	me aus S037.d	e			
Gebäude	abmessungen				Ξ	39
B H A Art	10. 12. 100. • Länge üb Länge m	000 m 000 m 000 m oer System anuell vorgebe	Breite (Giebels Höhe (Firsthöf Geländehöhe u m	eite) ne) üb. Meeresni	veau	
Dachform	ı				Ξ	43
Form ů T	Pultdach 1.	~ 000 m	Dachform Dachüberstan	d Traufseite		
Bauteillag	e in Dachfläche	9			Ξ	47
a⊤ Art	5. am Ortg Abstand	000 m ang manuell vorge	Abstand zur Tr eben	aufkante		
Öffnunge	en in Außenwar	dflächen			Ξ	49
J/N	vorgebe	'n				
automati	sche Windlaste	rmittluna			-	66
EW Art WZ Ort	Qk.W - Win ⊻ereinfacht WZ 1 <u>B</u> innen		zugehörige Eir Art der Ermittl Windzone Standort	wirkung ung		
Windricht	tung				-	70
Richt.	Anströmrid	ntung 0° auf Tr	aufe links			\sim
Erhöhung	der Windlaste	n			-	71
J/N	ansetzer	1				
Unterwin	d Traufkante				Ξ	73
J/N	berücksi	chtigen				
Windlastf	älle				Ξ	74
Art	Standard	×.				
automati	sche Schneelas	termittlung			=	76
EW SZ	Qk.S - Schn Zone 1	€ ~ ~	zugehörige Eir Schneelastzon	nwirkung e		

Bild 3. Eingabe "Wind/Schnee"

Belastungen

Zusätzlich zu den Wind- und Schneelasten können weitere Vertikallasten, die auf das Stahl-Trapezblechen wirken, manuell eingegeben werden.

Als Belastungen können verschiedene Flächenlasten vorgegeben werden. Zur Auswahl stehen hierbei folgende Flächenlasten:

• Gleichflächenlasten

Neben der Form der Flächenlast kann die Lastrichtung/Wirkungsrichtung gewählt werden. Hierbei kann die Last vertikal bezogen auf die Dachfläche oder die Grundfläche, horizontal oder orthogonal zur geneigten Dachfläche angesetzt werden.

Bild 4. Wirkungsrichtungen Belastungen

Die Berücksichtigung des Eigengewichts des Stahl-Trapezprofils erfolgt auf Wunsch programmseitig. Unter Berücksichtigung der Lastrichtung wird der Anteil der Schubbelastung des Trapezprofils ermittelt und entsprechend beim Schubnachweis angesetzt.

Bemschnittgrößen	Bemessu	ngsschnittgri	ößen		
Grafik	Schnittgr	ößen (je Kon	bination)		
Komb. 1	M _{y,d} [kNn	n/m]	V _{z,d} [kN/m]	V _{y,d} [kN/m]	
	0.14	0.24	0.18 0.31	-0.18 -0.02 -0.03	0.02
Komb. 2	M _{y,d} [kNn	n/m]	V _{z,d} [kN/m]	V _{y,d} [kN/m]	
	A 1.01	1.79	1.34 2.24	-1.34 -0.12 -0.20	0.12
Komb. 14	M _{y,d} [kNn	1/m]	V _{z,d} [kN/m]	V _{y,d} [kN/m]	
	Δ	-0.63	0.07 0.18	1.26	-0.11
Komb. <i>18</i>	M _{y,d} [kNn	n/m]	V _{z,d} [kN/m]	V _{y,d} [kN/m]	
	-1.09	-0.39	-1.91 -1.23	0.56 	-0.05
Komb. 20	M _{y,d} [kNn	n/m]	V _{z,d} [kN/m]	V _{y,d} [kN/m]	
	-0.39	-1.06	-0.56 1.23 -0.56 -1.48	-0.47 -0.43	-0.16
Tabelle	Schnittgr	ößen (je Kon	ibination)		
	Feld	x [m]	M _{y,d} [kNm/m]	V _{z,d} [kN/m]	V _{γ,d} [kN/m]
Komb. 1	1	0.00	0.00 0.14 * -0.24 *	0.18 * 0.00 -0.31 *	-0.02 * 0.00 0.03 *
	2	0.00	-0.24 * 0.14 *	0.31*	-0.03 *
Komb. 2	1	4.00 0.00 1.50	0.00 0.00 1.01 *	-0.18 * 1.34 * 0.00	-0.02 * -0.12 * 0.00
	2	4.00 0.00 2.50	-1.79 * -1.79 * 1.01 *	-2.24 * 2.24 * 0.00	0.20* -0.20* 0.00
Komb. 14	1	4.00	0.00	- <u>1.34</u> * 0.07	0.12*

Bild 5. Ausgabe Belastungen in 2 Richtungen

Material / Querschnitt

Zur Auswahl stehen insgesamt 429 verschiedene Trapezprofile der in Bild 6 aufgeführten Hersteller.

Trapezprofil auswählen		×
Lage des Profils		
Hersteller	Тур	
ARCELOR	100/275-1.25	^
FISCHER	100/275-1.50	
HOESCH	100/275A-0.75	
PREUSSAG	100/275A-0.88	
SAB	100/275A-1.00	
	100/275A-1.13	
	100/275A-1.25	
	100/275A-1.50	
	135/310-0.75	
	135/310-0.88	
	135/310-1.00	
	105/010 1 10	~
OK	Abbrechen Hilfe	

Bild 6. Auswahldialog Trapezprofil

Das gewünschte Trapezprofil kann über die Angabe des Herstellers und der Profilbezeichnung (einschließlich der Blechdicke) im Auswahldialog ausgewählt werden. Da jedes Trapezprofil mit einer festen Streckgrenze gemäß Zulassung (siehe Typenblätter) produziert wird, sind die Materialeigenschaften automatisch vorgegeben. Die jeweiligen Typenblätter gelten ausschließlich für die nach Zulassung angegebenen Materialkennwerte. Über die Definitionen zur Lage des Profils (Positiv- oder Negativlage) sowie der Montageart lassen sich alle möglichen in Bild 7 dargestellten Varianten erzeugen und nachweisen. Die Befestigung des Profils erfolgt je nach Auswahl entweder in jeder oder in jeder zweiten Sicke.

Mat./Querschnitt	ARCELOR 135/310, 1.00 mm Positivlage aufliegend Befestigung in jedem anliegenden Gurt						
Material/ Querschnittswerte	E-Modul [N/mm²]	ا+ء [cm4/n]	n] [cm4	l' _{eff} /m] [c	A _g m²/m]	A _{eff} [cm²/m]	f _{y,k} [N/mm²]
	210000	387	.0 3	87.0	15.11	6.16	320
Bemessungswerte der Widerstandsgrößen bei	Aufl. [mm]	Rw,Rd [kN/m	,∧ Mo n][kNm	0,Rd,B (/m] [kN	Mc,Rd,B im/m]	Ro,Rd,B	Rw,Rd,E [kN/m]
andrückender Last	A (60)		- 1	3.55	11.73	33.62	28.36
	B (60)		- 1	3.55	11.73	33.62	28.36
	C (40)	12.0	19	-	-	-	
V _{w,Rd} = 60.35 kN/m M _{c,Rd,F} = 13.45 kNm/m							
Bemessungswerte der	Mc,Rd,F	Rw,Rd,A	M0,Rd,B	Mc,Rd,B	R0,Rd,B	Rw,Rd,B	Vw,Rd
Widerstandsgrößen bei	[kNm/m]	[kN/m]	[kNm/m]	[kNm/m]	[kN/m]	[kN/m]	[kN/m]
abhebender Last	14.09	60.35	15.68	12.55	-	-	60.35

Bild 7. Ausgabe "Material/Querschnitt" mit Bemessungswerten des gewählten Trapezprofils

Bei Positivlage der Stahl-Trapezprofile liegen die Gurte, welche den Längsstoß bilden, an der Unterkonstruktion. Entsprechend ist bei der Negativlage der Längsstoß nicht mit der Unterkonstruktion verbunden.

Montage	Positivlage	Negativlage
aufliegend		
untergehängt		

Bild 8. Definitionen der Profillage

Vorbem Material/	erkung Querschnitt	System Nachweise	Wind/Sch Anschlüsse	nee Ausgabe	Belastungen Erläuterur	ng
Kombinat	orik				-	99
Art	 automat manuelle 	ische Kombinati Kombination c	on der Einwirku ler Einwirkungen	ngen		
ungünstig	er Lastansatz					
J/N	ungünst	ige Laststellung	unterdrücken			
Grenzzust	and der Tragfå	higkeit			Ξ	105
J/N	🖌 Nachwe	ise führen				
Schubfeld	werte				=	106
Art	 Normalb Sonderb 	efestigung efestigung				
Stegbelas	tung				Ξ	107
J/N	✔ Nachwe	is der Stegbelas	tung			
Lagesiche	rheit				Ξ	108
J/N	✔ Nachwe	ise führen				
Grenzzust	and der Gebra	uchstauglichkeit	t		=	109
J/N	✓ Nachwe	ise führen				
Verformur	ngsnachweis				Ξ	110
J/N Komb Art	 ✓ Nachwe selten ● empfohl ● Grenzwe 	is der zulässiger ene Grenzwerte rte vorgeben	n Durchbiegung Kombinationst	ур		
Relativvers	schiebung				Ξ	114
J/N	Nachwe	is der Relativver	schiebung			
Zulässige	Ausnutzungsü	berschreitunger	n und -unterschr	eitungen	Ξ	115
J/N	v orgebe	'n				

Bild 9. Eingabe "Nachweise"

Nachweise

Die Nachweisführung erfolgt nach DIN EN 1993-1-3 in Verbindung mit DIN EN 1993-1-3/NA. Die Querschnitts- und Bemessungswerte sind für alle zur Verfügung stehenden Trapezprofile in den Stammdaten hinterlegt.

Die Nachweise werden getrennt für eine Beanspruchung des Trapezprofils um die "starke" Achse bzw. um die "schwache" Achse geführt. Die Beanspruchungen um die "starke" Achse ergeben sich aus Biegung und Querkraft in z-Richtung. Die Beanspruchungen um die "schwache" Achse ergeben sich aus Schubbelastungen in y-Richtung.

Biegung um die starke Achse

Bei den Tragsicherheitsnachweisen im Grenzzustand der Tragfähigkeiten sind je Einwirkungskombination verschiedene Bedingungen für die Tragfähigkeit der Trapezprofile einzuhalten. Die Nachweise sind jeweils für End- und Innenauflager sowie für Feldbereiche zu führen.

Bei den Tragsicherheitsnachweisen sind je Einwirkungskombination die folgenden Bedingungen einzuhalten:

Nachweisformate

•	Feldmomente	$M_{\rm Ed,F} \leq M_{\rm c,Rd,F}$
•	Endauflagerkräfte	$F_{\rm Ed,A} \leq R_{\rm w,Rd,A}$
•	Zwischenauflager	$M_{\rm Ed,B} \leq M_{\rm c,Rd,B}$
•	Interaktion	$V_{\rm Ed,B} \leq V_{\rm w,Rd}$

 $\frac{M_{\rm Ed,B}}{M_{0,\rm Rd,B}} + \left(\frac{F_{\rm Ed,B}}{R_{0,\rm Rd,B}}\right)^{\varepsilon} \le 1$

oder

$$\frac{M_{\mathrm{Ed,B}}}{M_{\mathrm{c,Rd,B}}} + \left(\left(\frac{2 * V_{\mathrm{Ed,B}}}{V_{\mathrm{w,Rd}}} \right) - 1 \right)^2 \le 1$$

Nachweise (GZT)	für den G 3, Ausfüh	irenzzusta Irung naci	and der Tragfa h DIN 18807-3	ähigkeit nach E 3 Bild 6	DIN EN 19	93-1-3, DIN EN	1993-1-
Endauflager	Aufl.	EK		F _{Ed,A} [kN/m]			η [-]
	С	2		1.55			0.13
Innenauflager	Aufl.	EK	N _{Ed} [kN/m]	F _{Ed,B} [kN/m]	V _{Ed,B} [kN/m]	M _{Ed,B} [kNm/m]	η [-]
	A	2		3.94			0.14
		19			6.40		0.11
		19	-			6.40	0.51
		19	-	-12.40		6.40	-
		1	-		-0.35	-0.35	-
	В	2		4.06			0.14
		19			-4.87		0.08
		19	-			2.73	0.22
		19	-	-8.15		2.73	-
		1	-		0.42	-0.26	-
Felder	Feld	EK	x [m]	N _{Ed} [kN/m]		M _{Ed,F} [kNm/m]	η [-]
	кі	1	0.00	-		0.00	0.00
	1	19	0.10	-		5.81	0.43
		19	3.90	-		2.41	0.18
	2	23	0.10	-		-0.60	0.04
		19	2.40	-		-3.12	0.22
Schubfluss	Lager	EK	Vd	Te	I	T _{1,Rd} T _{2,Rd}	η
			[kN]	[kN/m]		kN/m]	
	A	19	6.00	6.00		69.82	0.09
						7.11	0.84

Schubnachweise

Je nach Trapezprofilhersteller liegen den Zulassungen insgesamt drei unterschiedliche Berechnungsverfahren zur Nachweisführung zugrunde:

- Verfahren nach Schardt und Strehl [5], [6]
- Verfahren nach Bryan und Davies [7], [8]
- kombiniertes Verfahren [9], [10]

Die DIN EN 1993-1-3 [3] stellt hierbei lediglich die Grundlagen zur Verwendung von Trapezprofilen als Schubfeld zur Verfügung.

Je nach Hersteller basieren die Zulassungen auf einem der zuvor genannten Berechnungsverfahren. Damit unterscheidet sich auch der Aufbau der Schubfeldwerte in den Zulassungen der Hersteller. Modulseitig wird mit der Auswahl eines Trapezprofils automatisch das der entsprechenden Zulassung zugrunde liegende Berechnungsverfahren verwendet.

Im Grenzzustand der Tragfähigkeit führt das S133.de den Nachweis des Schubflusses und den Nachweis der Stegbelastung.

Verfahren nach Bryan und Davies

$$\begin{split} T_{\rm d} &\leq \frac{T_{1,\rm Rk}}{\gamma_{\rm M1}} \\ T_{\rm d} &\leq \frac{T_{2,\rm Rk}}{\gamma_{\rm M1}} \\ T_{2,\rm Rk} &= 0.7 \cdot \frac{T_{\rm crit,g} \cdot T_{\rm crit,l}}{T_{\rm crit,g} + T_{\rm crit,l}} \\ T_{2,\rm Rk} &= 0.7 \cdot T_{\rm crit,g}' \quad \text{falls } T_{\rm crit,l} \text{ nicht angegeben ist} \\ T_{2,\rm Rk} &= 0.7 \cdot T_{\rm crit,g}' \quad \text{falls } T_{\rm crit,l} \text{ nicht angegeben ist} \\ T_{\rm crit,g} &= T_{\rm crit,g} \cdot \left(\frac{L_{\rm R}}{L_{\rm Si}}\right)^2 \\ \text{mit} \\ T_{1,\rm Rk} & \text{Schubflussbeanspruchbarkeit } (25\% f_{\rm y}) \\ T_{2,\rm Rk} & \text{Schubflussbeanspruchbarkeit} \\ \quad (\text{lokales und globales Beulen}) \\ T_{\rm crit,g} & \text{globaler kritischer Beulschubfluss} \\ T_{\rm crit,l} & \text{lokaler kritischer Beulschubfluss} \\ L_{\rm R} & \text{Referenzlänge} \\ L_{\rm Gritz} & \text{Finzelstützweite des Schubfeldes} \\ \end{split}$$

Kombiniertes Verfahren

$T_{\rm d} \le \frac{T_{\rm Rk,l}}{\gamma_{\rm M1}}$	
$T_{\rm d} \le \frac{T'_{\rm Rk,g}}{\gamma_{\rm M1}}$	
$T'_{\rm Rk,g} = T_{\rm R}$	$_{\rm k,g} \cdot \left(\frac{L_{\rm R}}{L_{\rm Si}}\right)^2$
mit	
$T_{\rm Rk,g}$	globaler Beulschubfluss
$T_{\rm Rk,l}$	Kleinstwert aus lokalem Beulschubfluss und Spannungsnachweis
$L_{\rm R}$	Referenzlänge
L_{Si}	Einzelstützweite des Schubfeldes

Verfahren nach Schardt und Strehl

$T_{\rm d} \le \frac{T_{1,\rm Rk}}{\gamma_{\rm M1}}$	<u>c</u>
T _d	Schubfluss infolge der Einwirkungen im GZT
$T_{1,\mathrm{Rk}}$	char. Schubflussbeanspruchbarkeit aus dem Spannungsnachweis
γм1	Teilsicherheitsbeiwert gem. [4]

Nachweis der Lagesicherheit

Im Modul S133.de kann der Nachweis der Lagesicherheit und gegebenenfalls die Ermittlung der Bemessungszugverankerung geführt werden.

Beim Nachweis der Lagesicherheit wird geprüft, ob der Bemessungswert der destabilisierenden Einwirkungen kleiner ist als der Bemessungswert der stabilisierenden Einwirkungen.

Für den Nachweis der Lagesicherheit werden spezielle Bemessungskombinationen gebildet. Hierbei wird z.B. für die ständigen Einwirkungen unterschieden, ob diese haltend oder treibend wirken. Im Kapitel "Kombination" der Ausgabe werden diese mit der Art "Lagesicherheit" gekennzeichnet.

Wenn der Nachweis der Lagesicherheit nicht eingehalten ist, muss diese durch den zusätzlichen Ansatz eines Bauteilwiderstands sichergestellt werden.

Lagesicherheit	Lagesicherheitsnachweis in vertikaler Richtung nach NDP zu A1.3.1(3)						
DIN EN 1990, 6.4.2	Aufl.	Ek	F _{d,dst}	F _{d,stb}	η		
		[-]	[kN]	[kN]	[-]		
	A	45	-12.93	0.48	26.90 !		
	В	45	-8.70	0.50	17.56 !		
	С	45	-4.57	0.19	24.15 !		
	Zugverankeru	ng					
ständig/vorüberg.	Aufl.			Fd	anch EK		
				[kN	/m]		
	A			-12	2.40 48		
	В			-	8.15 48		
	C				4.36 48		

Bild 11. Ausgabe Nachweis "Lagesicherheit"

Grenzzustand der Gebrauchstauglichkeit

Neben den Nachweisen im Grenzzustand der Tragfähigkeit können wahlweise Nachweise im Grenzzustand der Gebrauchstauglichkeit geführt werden. Im Grenzzustand der Gebrauchstauglichkeit werden die Einhaltung der Begehbarkeit, der maximalen Verformung, des maximalen Gleitwinkels sowie die Relativverschiebung des Profil-Obergurts nachgewiesen.

Der Nachweis der Begehbarkeit für Dachtrapezprofile erfolgt unter Beachtung der Grenzstützweite "Lgr". Durch diesen Nachweis ist auch die Begehbarkeit durch eine Person (Mannlast) bei Montage und Wartung sichergestellt.

Nachweise (GZG)	im Grenzzustand der Gebrauchstauglichkeit nach DIN EN 1993-1-3 und DIN EN 1993-1-1							
Begehbarkeit	Grenzstützweite L_{gr} = 14.30 m > 4.00 m							
Grenzwerte der Durchbiegung	Felder I/300 Kragarme I/150							
max. Verformungen	Feld	x [m]	EK	w [mm]	W _{zul} [mm]	η [-]		
	Kl (L = 2.00 m)	0.00	33	-12.2	13.3	0.91		
	1 (L = 4.00 m)	1.23	33	1.7	13.3	0.13		
	2(l = 4.00 m)	2 18	33	-37	133	0.28		

Bild 12. Ausgabe Nachweise (GZG)

Nachweis für einen Steg

$$K = \max Ki = \frac{|MB|}{2 \cdot a \cdot \sin \varphi} \cdot b_{\rm F}$$

*b*_R Rippenbreite

L Stützweite

K größere der links und rechts auftretenden Kräfte

V_L Querkraft

M_B Stützmoment

Überkragendes Ende der Profiltafeln liegt oben

Nachweis für einen Steg

$$K = \max Ki = \frac{\left|\frac{MB}{a} + V_{\rm L}\right|}{2 \cdot \sin \varphi} \cdot b_{\rm H}$$

b_R Rippenbreite

L Stützweite

- K größere der links und rechts auftretenden Kräfte
- V_L Querkraft
- M_B Stützmoment

Anschlüsse

Die industriell vorgefertigten Trapezbleche werden mit der Unterkonstruktion verschraubt. Bei größeren Längen können biegesteife Querstöße ausgeführt werden. Neben den Nachweisen des Trapezprofils können solche Verbindungen einzelner Trapezprofile untereinander sowie Anschlüsse an die Unterkonstruktion nachgewiesen werden.

Bild 13. Eingabe "Anschlüsse", Biegesteifer Stoß

Biegesteifer Stoß

Wenn das Trapezprofil als Mehrfeldträger ausgebildet werden soll, die Trapezprofiltafeln jedoch wegen Begrenzung der Liefer- und Transportlängen nicht für die gesamte Länge zur Verfügung stehen, können die einzelnen Elemente überlappend ausgeführt werden. Diese Überlappungen sind als biegesteife Stöße auszubilden. Biegesteife Stöße sind nur im Auflagerbereich zulässig.

Vorbeme Material/O	rkung Querschnitt	System Nachweise	Wind/Schi Anschlüsse	nee Ausgabe	Belastungen Erläuterung	
Verbindung	g mit der Unte	rkonstruktion			⊟ 126	
J/N	✓ Nachweis	s führen				
Verbindung	g 01				⊟ 127	
Von	Lager A	\sim				
Bis	Lager C	\sim				
Mat	<u>S</u> tahl	\sim	Material der Un	terkonstruk	tion	
Verbindung	gsmittel					
Art	Setzbolzen	\sim	VBM			
Herst	ITW	\sim	Hersteller			
Bez	SBR-14	~	Bezeichnung de	s Verbindur	ngsmittels	
Art	• Bemessung					
	🔵 Nachweis					
Faktor	1.0	\sim	Abminderungsf	aktor nach	Anlage 1.2	
Verbindung	y 02				⊟ 127	
Von		\sim				

Bild 14. Eingabe "Anschlüsse", Verbindung mit der Unterkonstruktion

Biegesteife Stöße können nach DIN 18807 Teil 3 nachgewiesen werden. Der Nachweis erfolgt durch Gegenüberstellung der Beanspruchungen aus Bemessungslasten und der Widerstände der Verbindungselemente auf Abscheren.

Verbindung mit der Unterkonstruktion

Neben einer möglichen Verbindung bzw. Überlappung einzelner Trapezblechelemente kann die Verbindung der Trapezbleche mit der Unterkonstruktion nachgewiesen werden.

Der Nachweis wird unter Beachtung der Unterkonstruktion geführt. Hierbei kann wahlweise eine Unterkonstruktion aus Stahl oder Holz sowie Stahlbeton oder Mauerwerk mit Stahloder Holzunterlage nachgewiesen werden.

mb-news 3|2021

Als Verbindungsmittel können je nach gewähltem Material der Unterkonstruktion verschiedene Verbindungsmittel gewählt werden. Folgende Verbindungsmittel stehen zur Auswahl:

- Blindnieten
- Bohrschrauben
- Gewindefurchende Schrauben
- Setzbolzen

Die Auswahl des Verbindungsmittels sowie das vorhandene Material der Unterkonstruktion kann für jedes Auflager separat gewählt und nachgewiesen werden.

Ausgabe

Es wird eine vollständige, übersichtliche und prüffähige Ausgabe der Bemessung zur Verfügung gestellt. Der Ausgabeumfang kann in gewohnter Weise gesteuert werden.

Dipl.-Ing. David Hübel mb AEC Software GmbH mb-news@mbaec.de

Bild 15. Ausgabe "Verbindungen"

Literatur

- DIN EN 1993-1-3: Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kalt-geformte Bauteile und Bleche; Deutsche Fassung EN 1993-1-3:2006 + AC:2009. Ausgabe Dezember 2010. Beuth Verlag.
- [2] DIN EN 1993-1-3/NA: Nationaler Anhang National festgelegte Parameter - Eurocode 3: Bemessung und Konstruktion von Stahlbauten - Teil 1-3: Allgemeine Regeln - Ergänzende Regeln für kaltgeformte dünnwandige Bauteile und Bleche. Ausgabe Dezember 2010. Beuth Verlag.
- [3] DIN EN 1990 Grundlagen der Tragwerksplanung. Ausgabe 12/2010, Beuth Verlag.
- [4] DIN 18 807-3: Trapezprofile im Hochbau, Stahltrapezprofile
 Teil 3: Festigkeitsnachweis und konstruktive Ausbildung. Ausgabe Juni 1987.
- [5] Schardt, R., Strehl, C.: Theoretische Grundlagen f
 ür die Bestimmung der Schubsteifigkeit von Trapezblechscheiben -Vergleich mit anderen Berechnungsans
 ätzen und Versuchsergebnissen. Der Stahlbau 45 (1976), H. 4, S. 97-108.
- [6] Schardt, R., Strehl, C.: Stand der Theorie zur Bemessung von Trapezblechscheiben. Der Stahlbau 49 (1980), H. 11, S. 325-334.
- [7] ECCS Pub. No. 88: European Recommendations for the Application of Metal Sheeting acting as Diaphragm - Stressed Skin Design. European Convention for Constructional Steelwork, Brussels, 1995.
- [8] Davies, J. M., Bryan, E. R.: Manual of stressed skin diaphragm design. Granada Publishing, London, 1982.
- [9] Kathage, K., Lindner, J., Misiek, Th., Schilling, S.: A proposal to adjust the design approach for the diaphragm action of shear panels according to Schardt and Strehl in line with European regulations. Steel Construction 6 (2013), No. 2, pp. 107-116.
- [10] Baehre, R., Wolfram, R.: Zur Schubfeldberechnung von Trapezprofilen. Stahlbau 55 (1986), H. 6, S. 175-179.

Preise und Angebote

S133.de Stahl-Trapezprofile quer zur Dachneigung – EC 3, DIN EN 1993-1-1:2010-12 Weitere Informationen unter https://www.mbaec.de/modul/S133de

BauStatik Ser-Paket bestehend aus 5 BauStatik-Modulen deutscher Norm nach Wahl*

BauStatik 10er-Paket

bestehend aus 10 BauStatik-Modulen deutscher Norm nach Wahl*

* ausgenommen: S012, S018, S030, S141.de, S261.de, S410.de, S411.de, S414.de, S630.de, S811.de, S853.de

Es gelten unsere Allgemeinen Geschäftsbedingungen. Änderungen und Irrtümer vorbehalten. Alle Preise zzgl. Versandkosten und MwSt. – Hardlock für Einzelplatzlizenz je Arbeitsplatz erforderlich (95,- EUR). Folgelizenz-/Netzwerkbedingungen auf Anfrage. – Stand: Mai 2021

Unterstütztes Betriebssystem: Windows 10 (64)