

mb AEC Software GmbH

MicroFe

Finite Elemente-System für das Bauwesen

Vorwort

Dieses Handbuch möchte Ihnen den Einstieg in MicroFe erleichtern. Weitergehende Informationen finden Sie in der Online-Dokumentation oder unter www.mbAEC.de → MicroFe → Datenblätter. Gerne dürfen Sie unser umfangreiches Schulungsprogramm nutzen, um Ihr Wissen zu vertiefen.

Weitere Infos: www.mbaec.de

Inhalt

1	Der ProjektManager	
1.1	Bauvorhaben anlegen	5
1.2	Mit dem ProjektManager arbeiten	6
1.3	Was leistet der ProjektManager?	7
1.4	Verwaltung und mehr	8
2	FE-Modell erzeugen	
2.1	FE-Modell anlegen	9
2.2	Der Arbeitsbildschirm	.10
2.3	Platten-Positionen eingeben	11
2.4	Wand- und Stützen-Positionen eingeben	.12
2.5	Unterzug-Positionen eingeben	.13
2.6	Lasten eingeben	.14
2.6.1	Lastfelder setzen	.14
2.6.2	Last-Positionen setzen	.15
2.7	Einwirkungen, Lastgruppen und Lastfälle verwalten	.16
2.8	Positionseigenschaften verändern	.17
2.9	Geometrie verändern	.18
2.10	FE-Modell berechnen	.19
3	Ergebnisse ausgeben	
3.1	Verformungen kontrollieren	.20
3.2	Schnittgrößen darstellen	21
3.3	Auflagergrößen darstellen	.22
3.4	Bemessungsschnittgrößen steuern	.23
3.5	Bemessung durchführen	.24
3.6	Bemessung darstellen	.25
3.7	Details und Anschlüsse nachweisen	26
3.8	Verformungsnachweis im gerissenen Zustand	.27
3.9	Auswertungspositionen setzen	.28
3.10	Plotausgaben erzeugen	29
3.11	Statik zusammenstellen	.30
3.12	Statik ausgeben	31

4	Arbeiten	optimieren
---	----------	------------

4.1	Arbeitsfenster einrichten	.32
4.2	Vorlagen verwalten	.33
4.3	Hinterlegungsobjekte nutzen	.34
4.3.1	Raster einfügen	.34
4.3.2	PDF oder Grafik einfügen	.35
4.3.3	Folien einfügen	.36
4.3.4	Positionsdatei aus ViCADo übernehmen	.37
4.4	Selektionsmodus einstellen	.38
4.5	Komplexe Tragwerke gliedern	.39
4.6	Bildoperationen	.40
4.7	Lasten automatisch übernehmen	.41

Der ProjektManager

Bauvorhaben anlegen 1.1

Basis Ihrer Arbeit mit MicroFe ist das Projekt. Projekte werden grundsätzlich über den ProjektManager angelegt. Erst dann wird das entsprechende Anwendungsprogramm gestartet.

Die Projektinformationen zu Bauherrn, Architekt oder Tragwerksplaner stehen durchgängig allen Anwendungsprogrammen zur Verfügung. So landen die richtigen Angaben auf dem Titelblatt. Auch der Planstempel in den Entwurfs- oder Bewehrungsplänen bezieht seine Informationen automatisch aus den an dieser zentralen Stelle eingegebenen Daten.

Allgemeine Projektdaten werden an zentraler Stelle auf der Registerkarte Info eingegeben. Sie stehen dann in allen Anwendungsprogrammen zur Verfügung.

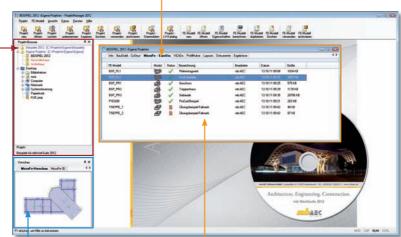
Hier können Sie angeben, welche Anwendungen in diesem Proiekt verwendet werden sollen.

- 1. Wählen Sie in der Menüleiste den Befehl **Projekt** → **Neu** oder klicken Sie auf das gleichnamige Symbol. Ein Dialogfenster zur Eingabe der Projektdaten wird geöffnet. Es ist in mehrere Registerkarten untergliedert.
- 2. Geben Sie im Dialog Projekt neu den Projektnamen und das Verzeichnis oder die

Gruppe an, in dem das Projekt mit seinen Daten gespeichert werden soll.

- 3. Wählen Sie die Anwendungsprogramme aus, die für die Projektbearbeitung genutzt werden sollen.
- 4. Das Projektfenster mit den angegebenen Anwendungen wird geöffnet. Die Registerkarte Info ist aktiv. Führen Sie einen Doppelklick auf die Visitenkarten aus, um Angaben zu Projekt-Informationen, Bauherr, Architekt oder Tragwerksplaner zu machen. Über das Kontextmenü können mit der Funktion Neue Adresse anlegen weitere Projektbeteiligte angelegt werden.
 - Über die Schaltfläche Übernahme Projektinformationen können Angaben aus anderen Projekten übernommen werden.
 - Nutzen Sie die Gruppen, um häufig genutzte Speicherorte schnell aufzurufen. Gruppen werden über das Kontextmenü im Projekt-Browser für Ordner erzeugt.

Schritt für Schritt



1.2 Mit dem ProjektManager arbeiten

Im ProjektManager werden alle erforderlichen Arbeiten am Projekt koordiniert. Mit seiner Hilfe lassen sich die Daten der einzelnen Anwendungsprogramme auf einheitliche Art und Weise bearbeiten. Der ProjektManager präsentiert sich übersichtlich in drei Fenstern.

Alle für ein Bauvorhaben genutzten **Anwendungsprogramme** werden in Form von Registerkarten aufgeführt. Über die rechte Maustaste öffnet sich beim Klick auf die Leiste ein Kontextmenü, über das Sie die Anwendung aus dem Projekt entfernen.

Im **Projekt-Browser** werden in einer Baumdarstellung alle Projekte aufgeführt.

Verzeichnisse, die als Gruppe angelegt wurden, sind blau hervorgehoben: Projekte, die mit der aktuellen Version erstellt wurden, sind dunkelrot dargestellt und durch ein entsprechendes Ordnersymbol gekennzeichnet. Projekte aus früheren Versionen sind orange markiert.

Eine **Vorschau** auf Modelle bzw. Positionen erleichtert Ihnen die Orientierung und Navigation im Projekt. Per Mausklick haben Sie alle Positionen eines Projekts der BauStatik im Zugriff.

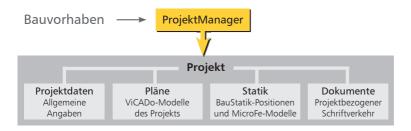
Schritt für Schritt

- Schauen Sie sich einmal in Ruhe im ProjektManager um. Klicken Sie im Projekt-Browser auf das Verzeichnis Beispiele 2012. Hier sind einige Bauvorhaben beispielhaft aufgeführt
- Entpacken Sie eines der Projekte durch Doppelklick in das Verzeichnis Beispiele 2012 und öffnen es. Auf der rechten Seite werden Ihnen die darin genutzten Anwendungsprogramme angezeigt.
- Wechseln Sie in die Registerkarte MicroFe. Es werden alle Modelle aufgelistet, die zu dem gewählten Projekt bereits angelegt worden sind. Der Spalte Status können Sie entnehmen, welche FE-Modelle bereits berechnet wurden.

- Projekte, die mit älteren Ing*-Versionen erstellt wurden, können in die mb WorkSuite 2012 übernommen und konvertiert werden.
- Projekte lassen sich auch per Mausklick umbenennen oder kopieren. Hierbei bleibt die gesamte Projekt-Intelligenz mit all ihren Bezügen erhalten.

1.3 Was leistet der ProjektManager?

Sie kennen die Situation: Sie benutzen mehrere Anwendungsprogramme, um Ihre Pläne und statischen Berechnungen zu erstellen. Gerade wenn an diesem Prozess mehrere Personen beteiligt sind, kann die Übersichtlichkeit schon mal darunter leiden.


- Wer hat wo welche Daten unter welchem Namen abgelegt?
- Welche Dateien gehören eigentlich zum Bauvorhaben?
- Und wer verwaltet den gesamten Schriftverkehr?

Fragen wie diese brauchen Sie in Zukunft nicht mehr selbst zu beantworten. Denn diese Aufgabe übernimmt der **ProjektManager**. Wer das ist? Sie lernen ihn durch einen Doppelklick auf das Programm-Icon kennen.

Der ProjektManager organisiert und verwaltet Ihre Bauvorhaben in Form von Projekten. Er ist die zentrale Plattform Ihrer Arbeiten. Bevor Sie ein Anwendungsprogramm starten, definieren Sie zunächst das Projekt. Aus diesem werden dann die benötigten Anwendungsprogramme geöffnet.

Zentrale Projektverwaltung mit dem Projektmanager

Sämtliche Anwendungsprogramme sind von zentraler Stelle aus im Zugriff:
 BauStatik CoStruc, MicroFe und ViCADo.

- Alles im Griff
- Die Kommunikation zwischen den einzelnen Anwendungsprogrammen ist sichergestellt. Projekte können durchgängig bearbeitet werden.
- Alle Projektdaten wie z.B. Projektname und Anschrift werden nur ein einziges Mal eingegeben und stehen in allen Anwendungsprogrammen zur Verfügung.
- Der gesamte Schriftverkehr, Lagepläne und Gutachten lassen sich projektbezogen verwalten.
- Alle Verzeichnisse, in denen die zum Projekt gehörenden Daten liegen, sind klar definiert. Fragen, wo sich welche Daten aktuell befinden, gehören der Vergangenheit an, auch über räumliche Grenzen hinweg.
 - Der ProjektManager kann lizenzfrei auf jedem Rechner installiert werden.
 Einfacher kann die papierlose Kommunikation nicht funktionieren.
 - Über den Adressen-Import können Sie auf ihre Adressenverwaltung zugreifen und somit den Eingabeaufwand reduzieren. Neben dem direkten Zugriff auf Outlook lassen sich Adressen über die Austauschformate LDIF und vCard einfügen.

1.4 Verwaltung und mehr

Aufgrund der klaren Projektstruktur lassen sich die Daten Ihrer Projekte schnell wieder finden. Mit wenigen Klicks haben Sie Projekte geöffnet, Modelle und Positionen bearbeitet und Änderungen gespeichert.

Der Projekt Manager kann aber noch mehr, als Ihre Daten übersichtlich zusammenzufassen und darzustellen

- Der ProjektManager unterstützt den elektronischen Datenaustausch mit allen am Planungsprozess Beteiligten. Projekte oder auch Teile daraus lassen sich in gepackter Form als Anhang an eine E-Mail verschicken.
- Der ProjektManager erlaubt die projektbezogene Verwaltung des gesamten Schriftverkehrs zu einem Bauvorhaben
- Projekte lassen sich leicht archivieren, denn der ProjektManager weiß, welche Daten zu einem Projekt gehören.

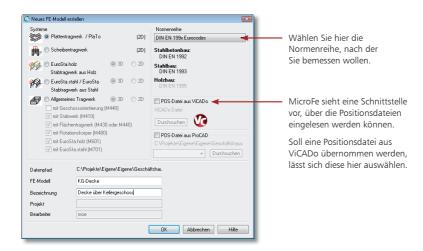
Datenarchiv anlegen/versenden

Schritt für Schritt

- 1. Um beispielsweise einzelne Modelle, Pläne etc. eines Projekts als Anhang einer E-Mail zu versenden, selektieren Sie diese im Programmfenster.
- 2. Führen Sie im Menü **Projekt** den Befehl **Senden an** aus.
- 3. Es erscheint ein Dialogfenster, in dem Sie den Umfang der Sendung festlegen können. Da wir nur die markierten FE-Modelle im Anhang berücksichtigen wollen, wählen Sie die Option die ausgewählten FE-Modelle (MicroFe).
- 4. Bestätigen Sie das Dialogfenster mit OK. Sie werden in einem weiteren Dialogfenster gefragt, ob auch die zum Modell gehörenden Sicherungskopien mit gepackt werden sollen. Existieren bereits einige Sicherungskopien, sollten Sie die Frage verneinen, um die Datenmenge so klein wie möglich zu halten.
- Das eingestellte E-Mail-Programm wird geöffnet. Die Modelle sind bereits gepackt als Anhang eingefügt. Sie müssen also nur noch den Text Ihrer E-Mail verfassen und los geht's.

Tipps & Tricks

Projekte werden über den Befehl **Projekt** → **Archiv** → **sichern** archiviert.



2 FE-Modell erzeugen

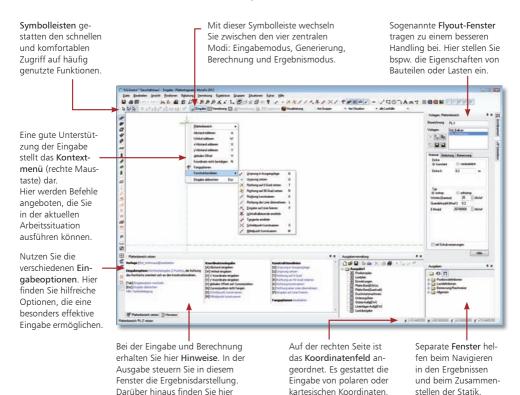
2.1 FE-Modell anlegen

MicroFe erfasst alle Eingaben als eine Menge von Positionen, die in einer Zuordnung zueinander stehen. Die Gesamtheit aus den Positionen mit den fachspezifischen Eigenschaften und den vielschichtigen Verknüpfungen und Beziehungen untereinander bilden das FE-Modell.

Das FE-Modell ist Basis der Berechnung und Bemessung. Der grundlegende Bezug auf das FE-Modell erlaubt eine durchgängige Datenhaltung von der Konstruktion über die Berechnung bis hin zur Analyse und Ausgabe der entsprechenden Dokumente.

- 1. Wählen Sie im Projektfenster des ProjektManagers das Anwendungsprogramm MicroFe. Klicken Sie hierzu auf die entsprechende Registerkarte.
- 2. Legen Sie ein neues FE-Modell an, indem Sie in der Symbolleiste des ProjektManagers auf das Symbol Neu klicken. MicroFe wird im Hintergrund gestartet, das Dialogfenster Neues FF-Modell erstellen erscheint
- 3. Lassen Sie die standardgemäß eingestellten Optionen Plattentragwerke (PlaTo) und Stahlbeton Norm DIN EN 1992-1 aktiv.
- Geben Sie im Feld FE-Modell den Namen ein, unter dem die FEM-Position geführt werden soll, hier KG-Decke. Tragen Sie im darunter liegenden Feld eine ausführliche Bezeichnung ein, z.B. Decke Kellergeschoss.
- 5. Bestätigen Sie mit OK.

Voraussetzung für die Übernahme der Positionsdatei aus ViCADo ist: Sie haben dort eine automatische Bauteilübernahme durchgeführt und die berechneten Positionen in eine Positionsdatei geschrieben, siehe Kapitel "4.3.4 Positionsdatei aus ViCADo übernehmen" auf Seite 37.


Schritt für Schritt

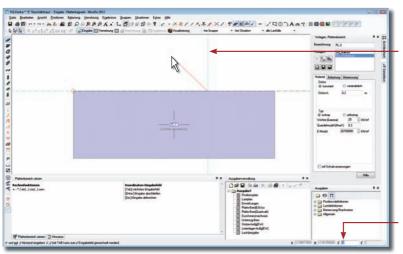
2.2 Der Arbeitsbildschirm

Unabhängig vom Programmbereich, in dem Sie sich gerade befinden, finden Sie in MicroFe eine einheitliche Oberfläche vor: den Arbeitsbildschirm. Dieser ist unter funktionalen Gesichtspunkten in mehrere Bereiche gegliedert, die vertraute Windows-Elemente enthalten. So lässt sich das Programm intuitiv bedienen.

Schritt für Schritt

- Klicken Sie in der standardgemäß links angeordneten Symbolleiste auf das Symbol Plattenbereich setzen. Im Vorlagenfenster werden die systemseitig definierten Vorlagen für das Setzen von Platten angezeigt.
- 2. Die Eingabe des Plattenbereichs kann beginnen.

die wichtigsten Tastaturbefehle.


- Alle Symbolleisten und Fenster lassen sich beliebig auf dem Arbeitsbildschirm anordnen. Wie Sie Ihre Arbeitsumgebung auf Ihre Bedürfnisse hin anpassen können, erfahren Sie im Kapitel "4.1 Arbeitsfenster einrichten" auf Seite 32.
- Mit Hilfe → Tasten gelangen Sie in eine Übersicht der Tastenbelegungen. Weitere Informationen hierzu finden Sie auch in der Broschüre Tastaturkürzel.

Platten-Positionen eingeben 2.3

Da die meisten Gebäude im Bauwesen rechtwinklig aufgebaut sind, bietet MicroFe zur Eingabe ein effektives Werkzeug: die lokal-orthogonalen Konstruktionslinien.

Die Konstruktionslinien stellen sich als zwei senkrecht zueinander stehende Linien dar und bilden das lokale Koordinatensystem. Die Ausrichtung der Konstruktionslinien kann bequem über die Symbolleisten oder über entsprechende Tastaturkürzel manipuliert werden.

In den folgenden Punkten geben Sie zuerst zwei Plattenbereiche vor:

- 1. Wählen Sie das Symbol Plattenbereich setzen und in der Eingabehilfe die Vorlage Std Wohnraum mit der Eingabeoption Rechteckeingabe (2 Punkte).
- 2. Mit einem Klick legen Sie die linke untere Ecke fest, die rechte obere Ecke hängt am Mauszeiger.
- 3. Über die Taste x geben Sie die Länge von "12 m" ein. Mit Tab wechseln Sie zu y' und geben die Breite von "4 m" vor. Bestätigen Sie die Eingaben mit Enter.
- 4. Den zweiten Plattenbereich geben Sie mit der Eingabeoption Polygoneingabe ein. Als Startpunkt wählen Sie die linke obere Ecke der vorhandenen Platte. Die Richtung der ersten Teilstrecke geben Sie vor, indem Sie die Maus auf die waagerechte Konstruktionslinie positionieren. Über die Taste a geben Sie die Länge von "8 m" vor.
- 5. Mit dem Mauszeiger legen Sie die Richtung der zweiten Teilstrecke fest und positionieren diesen im oberen linken Quadranten der Konstruktionslinien. Über die Taste x tragen Sie "-2 m" und nach dem Wechsel mit **Tab** für "y' = 2 m" ein und bestätigen.
- 6. Die Konstruktionslinien sind neu platziert und haben die Richtung der letzten Strecke übernommen. Mit der Taste T setzen Sie die Konstruktionsrichtung auf 0°. Die Länge der horizontalen dritten Teilstrecke geben Sie mit einer Länge von "a = 6 m" vor.
- 7. Über die Taste c schließen Sie die Eingabe des zweiten Polygons ab.

Über das Symbol Zoom Alles oder die Taste 0 wird die Gesamtansicht des Tragwerks wieder hergestellt. Weitere Informationen zur Steuerung des Bildausschnittes finden Sie im Kapitel "4.6 Bildoperationen" auf Seite 40.

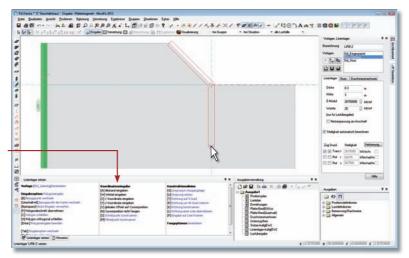
Das lokale Koordinatensystem wird durch die beiden aestrichelt dargestellten Achsen im Arbeitsfenster abgebildet.

Die grüne, eng gestrichelte Linie kennzeichnet die lokale x-Richtung (auch r-Richtung oder x'-Richtung genannt). Der Schnittpunkt der beiden Linien ist der lokale Nullpunkt.

Die Felder der numerischen Leiste können durch Drücken der gleichnamigen Taste aktiviert werden.

Innerhalb der Feld-Paare a/w und x'/v' schalten Sie mit Hilfe der Tab-Taste um

Schritt für Schritt



Wand- und Stützen-Positionen eingeben

Zur Beschreibung der Lagerung tragen Sie im folgenden Wand- als auch Stützen-Positionen in das Modell ein. Hier können Sie sich auf die bereits angelegten Plattenbereiche beziehen.

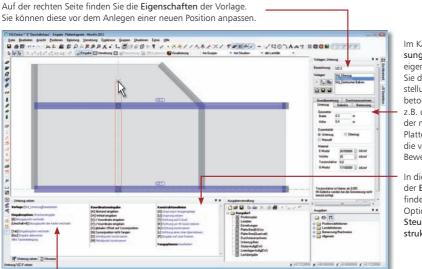
Im mittleren Bereich der Eingabehilfe finden Sie alle Tastaturbefehle für die Koordinateneingabe, auch "M" für Mittelpunkt konstruieren.

Schritt für Schritt

Die Lagerungen tragen Sie in den folgenden Schritten in Ihr System ein:

- 1. Wählen Sie das Symbol Linienlager setzen und in der Eingabehilfe die Vorlage Std Gelenk mit der Eingabeoption Streckeneingabe.
- 2. Mit einem Klick auf die linke obere Ecke der Plattenbereiche legen Sie den Startpunkt fest. Den zweiten Klick führen Sie auf die linke untere Ecke aus, das Linienlager ist platziert.
- 3. Für das zweite Linienlager wählen Sie die Eingabeoption Polygoneingabe. Der erste Polygon-Abschnitt verläuft an der schrägen Plattenkante. Dieses erstreckt sich von der schrägen Plattenkante oben bis an den unteren Plattenrand. Die Konstruktionsrichtung setzen Sie mit der Taste T auf 0°. Mit dem dritten Klick auf den Schnittpunkt der Konstruktionslinie mit dem horizontalen unteren Plattenrand legen Sie den zweiten Abschnitt fest.

- 4. Für die Stützen wählen Sie Stütze setzen mit der Vorlage Standard. In den Eigenschaften wählen Sie im Kapitel Durchstanznachweis die Option Kein Durchstanznachweis.
- 5. Die Platzierung der ersten beiden Stützen erfolgt jeweils in der Mitte der beiden parallel laufenden Linienlager. Nutzen Sie hier die Taste M um den Mittelpunkt zu bestimmen.
- 6. Zusätzlich platzieren Sie noch an jeder rechten Ecke der unteren Platte eine Stütze per Mausklick


Tipps & Tricks

Möchten Sie einen Plattenbereich umlaufend durch ein Linienlager lagern, dann nutzen Sie die Eingabeoption Polygon übernehmen (optional Offset). Mit nur einem Klick auf die bestehende Kontur wird das Lager erzeugt.

Unterzug-Positionen eingeben

Die Eingabe der Unterzüge erfolgt in gleicher Weise wie bei den Linienlagern.

Im Kapitel Bemessung der Positionseigenschaften finden Sie detaillierte Einstellungen zur Stahlbetonbemessung, z.B. die Steuerung der mitwirkenden Plattenbreite oder die vorhandene Bewehruna.

In diesem Bereich der Eingabehilfe finden Sie alle Optionen zur Steuerung der Konstruktionslinien.

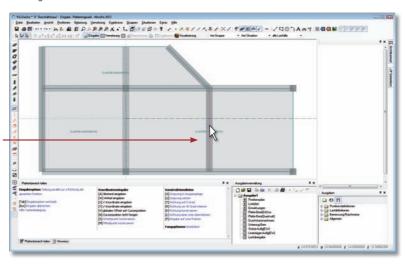
Im linken Teil der Eingabehilfe finden Sie verschiedene Eingabeoptionen wie "polygonal", "Rechteck" usw.

Folgende Schritte sind erforderlich:

Schritt für Schritt

- 1. Wählen Sie das Symbol Unterzug setzen und in der Eingabehilfe die Vorlage Std Unterzug mit der Eingabeoption Streckeneingabe.
- 2. Den ersten Unterzug geben Sie an der unteren Plattenkante über zwei Klicks vor.
- 3. Den zweiten Unterzug platzieren Sie parallel zum ersten Unterzug am Übergang vom ersten zum zweiten Plattenbereich.
- 4. Zuletzt geben Sie den dritten Unterzug vor, von der unteren Randstütze bis zum oberen Plattenrand.

- Alle Optionen zur Eingabe mit den Konstruktionslinien finden Sie im Fenster Eingabehilfe, zweite und dritte Spalte.
- Die Reihenfolge bei der Positionseingabe steht Ihnen frei. Sie können auch mit der Eingabe der Lager beginnen.



2.6 Lasten eingeben

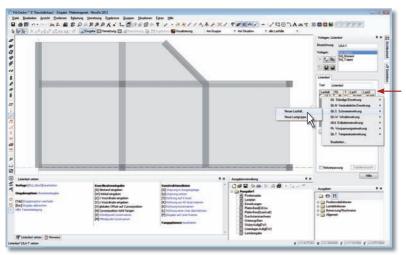
Wurde das Tragwerk eingegeben, kann die Definition der Lasten erfolgen. Hierbei ist grundsätzlich zwischen Lastfeldern von Plattenbereichen und den zusätzlichen Last-Positionen zu unterscheiden.

2.6.1 Lastfelder setzen

Ein Plattenbereich besitzt nach der Eingabe automatisch ein Lastfeld. Lastfelder beziehen sich auf die Nutzlast (q), die in den Eigenschaften eines Plattenbereiches unter Belastung, eingegeben wurde. Damit nicht jeder Plattenbereich nur als Ganzes mit der Nutzlast (q) belastet wird, kann das automatische Lastfeld in mehrere Lastfelder unterteilt werden. Jedem Lastfeld wird automatisch ein Lastfall zugeordnet, wodurch die ungünstigste Laststellung modelliert werden kann.

Bewegen Sie den Mauszeiger in Ihrem Modell. Je nach gewählter Eingabeoption zeigt Ihnen MicroFe als rote Linie die Kontur der resultierenden Lastfelder zur aktuellen Position der Maus.

Schritt für Schritt


- 1. Im Folgenden teilen Sie die vorhandenen Plattenbereiche in einzelne Lastfelder. Klicken Sie in der linken Symbolleiste auf das Symbol Lastfelder setzen.
- 2. Bei der Eingabeoption der Lastfelder wählen Sie Teilung parallel zur s-Richtung der gesamten Position. Richten Sie die Konstruktionslinien mit der Taste T auf 0-Grad. Mit jeder Bewegung des Mauszeigers sehen Sie nun im jeweiligen Plattenbereich eine rote Linie als Vorschau auf die Teilung des Lastfeldes.
- 3. Als Teilungslinien wählen Sie für beide Plattenbereiche jeweils die Innenlager. So erzeugen Sie durch drei Klicks zwei Lastfelder im oberen und drei Lastfelder im unteren Plattenbereich.

- Beachten Sie bei der Eingabe folgenden Tipp: Geben Sie lieber ein Lastfeld zu viel ein, als eines zu wenig!
- Die Eingabe von Last-Positionen erfolgt analog zur Eingabe von Bauteil-Positionen.
- Über das Kontextmenü, Eintrag "Lastfelder", lassen sich Lastfelder auch miteinander vereinigen.

2.6.2 Last-Positionen setzen

Als Last-Positionen können Punkt-, Linien-, Flächen- und Temperaturlasten oder Vorspannungen gesetzt werden. Eingeprägte Weggrößen können innerhalb der Lagereigenschaften definiert werden.

Mit der tabellarischen Lasteingabe können Sie direkt mehrere Lastgrößen verschiedener Lastfälle eintragen.

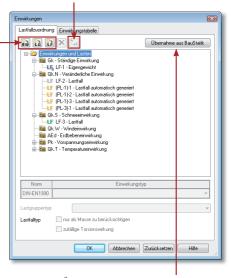
Über die Spalten "FG" und "T" können Sie die Form der Belastungen steuern. Entscheiden Sie sich in der Spalte "FG" für "Pt", durch Klick mit der rechten Maustaste in das Feld.

In der Spalte "T" können Sie durch einfaches Klicken mit der linken Taste zwischen Blocklast und Trapezlast wechseln.

- 1. Klicken Sie in der linken Symbolleiste auf das Symbol Linienlast setzen.
- 2. Im Fenster Vorlage -> Linienlast auf der rechten Seite sehen Sie die Eigenschaften der aktuelle Vorlagen Std Gleich. Erzeugen Sie durch einen Rechtsklick in die erste Zeile der Spalte Lastfall für die Einwirkung Qk.S einen neuen Lastfall. In der Zelle ist jetzt der LF-3 gewählt. Als Lastgröße geben Sie für Last1 "-10" vor. Bei Blocklasten wird Last2 automatisch mit dem gleichen Wert belegt.
- 3. Platzieren Sie die Last auf dem oberen Unterzug im System. Wählen Sie mit der Taste M (Mittelpunkt konstruieren) den Startpunkt auf dem oberen Unterzug, zwischen dem linken Lager und der Innenstütze. Als Endpunkt wählen Sie den Eckpunkt des rechten Linienlagers.
- 4. Bleiben Sie bei der Lasteingabe und erzeugen mit denselben Einstellungen die zweite Last orthogonal vom oberen freien Plattenrand bis zur halben Entfernung zum unteren Unterzug. Nutzen Sie hierzu wieder die Taste M.
 - Neben der direkten Lasteingabe stehen Ihnen auch die Zusammenstellung und die Übernahme zur Verfügung. So können Sie Auflagerkräfte der BauStatik-Positionen direkt als Belastungen in das Modell übernehmen. Dank der Zusammenstellung werden die übernommenen Werte in der Ausgabe dokumentiert.
 - MicroFe bietet über Zusatzmodule automatische Lastermittlungen für Wind- und Schneelasten nach DIN EN 1990 / DIN 1055 sowie auch für Eisenbahnlasten nach DIN FB 101/102 an.

Schritt für Schritt

2.7 Einwirkungen, Lastgruppen und Lastfälle verwalten


Alle Lasten, die in dem MicroFe-Modell berücksichtigt werden sollen, sind jeweils einem Lastfall zuzuordnen. Ein Lastfall ist immer Teil einer Einwirkung und kann mit anderen Lastfällen in Lastgruppen zusammengefasst werden. Mit dem Lastfall LF-1, der der Einwirkung Gk zugeordnet ist, werden alle automatisch bestimmten Eigengewichtslasten verwaltet.

> Name und Bezeichnung der Einwirkungen, Lastgruppen und Lastfälle können frei gewählt werden.

Über die Schalter EW, LG und LF lassen sich weitere Einwirkungen, Lastgruppen sowie Lastfälle erzeugen. Name und Beschreibung von Einwirkungen, Lastgruppen und Lastfällen können über den Schalter Umbenennen verändert werden.

- Lastfälle mit grünem Symbol wurden manuell eingegeben und beinhalten Lasten.
- Mit grauem Symbol werden leere Lastfälle gekennzeichnet.
- Orange markierte Lastfälle wurden automatisch erzeugt, z.B. für Lastfelder oder Windlasten.

Wird eine Einwirkung selektiert, kann der Einwirkungstyp verändert werden. Gleiches gilt auch für Lastgruppen. Hier kann z.B. gesteuert werden, dass bei der Auswertung oder Bemessung immer nur ein Lastfall der Lastgruppe vorhanden sein soll.

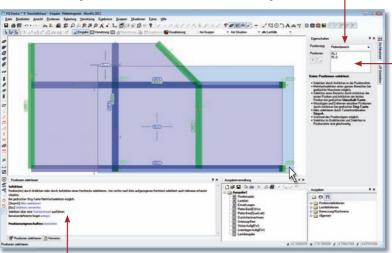
Mit der Option Übernahme aus der BauStatik können projektweite Einwirkungen der BauStatik (Module S026, S030.de) in das MicroFe-Modell übernommen werden.

Schritt für Schritt

- 1. Um einen Überblick über die vorhandenen Einwirkungen und deren Lastfälle zu erhalten, wählen Sie im Menü Belastung den Eintrag Einwirkungen.
- 2. Wählen Sie den LF-3 aus und ändern die Bezeichnung von LF in Schneelasten aus
- 3. Markieren Sie die Einwirkung Qk.S. Sie sehen den Einwirkungstyp Schnee- und Eislasten für Orte bis NN +1000m

Tipps & Tricks

Soll die Bemessung für ein Gebäude im Bereich des Norddeutschen Tieflandes erfolgen, reicht es aus, den Einwirkungstyp Schnee- und Eislasten für Norddeutsches Tiefland auszuwählen. Bei der automatischen Ermittlung der Schnittgrößen werden dann die der Einwirkung zugehörigen Lasten zusätzlich als außergewöhnliche Belastung mit 2,3-fachem Lastwert behandelt.



Positionseigenschaften verändern 2.8

Auch nachdem eine Position in einem Modell erzeugt wurde, können deren Eigenschaften jederzeit nachträglich verändert werden. So können z.B. die Höhen der Plattenbereiche, die Abmessungen einer Stütze oder auch die Bemessungsparameter angepasst werden.

Es lassen sich in einem Arbeitsgang auch die Eigenschaften von mehreren Positionen gleichen Typs modifizieren.

Das Eigenschaftenfenster zum Bearbeiten von Positionseigenschaften unterscheidet sich kaum vom Vorlagenfenster, das vor dem Setzen einer Position aufgerufen wird.

Im oberen Bereich lassen sich die Positionen der einzelnen Positionstypen zur Bearbeitung auswählen.

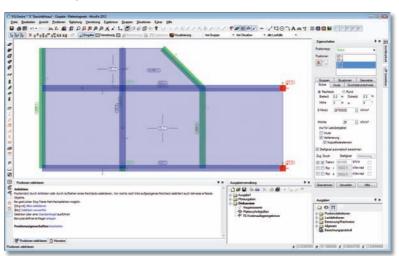
Die Eigenschaften werden wie im Vorlagenfenster über die einzelnen Reaisterkarten angepasst.

Regeln für die Selektion erleichtern deutlich das Selektieren z.B. aller Stützen mit gleichem Querschnitt.

Führen Sie die folgenden Schritte aus, um die Netzverfeinerungen an den Stützenköpfen auszuschalten:

- 1. Klicken Sie auf den Selektionspfeil Markieren (Esc). Anstelle des Vorlagenfensters wird jetzt das Eigenschaftenfenster eingeblendet. Selektieren Sie die zu bearbeitenden Positionen im Zeichenbereich oder im Eigenschaftenfenster.
- 2. Ziehen Sie eine Box, die alle Stützen einschließt, von links oben nach rechts unten auf. Beachten Sie die Richtung, da auf diese Weise nur Positionen selektiert werden, die komplett innerhalb der Box liegen und nicht die Ränder schneiden.
- 3. Alle Stützen sind nun selektiert und Sie sehen auf der rechten Seite die Eigenschaften der Positionen. Entfernen Sie nun den Haken bei Verfeinerung.
- 4. Haben Sie alle Eingaben abgeschlossen, klicken Sie auf die Schaltfläche Übernehmen. Es werden die geänderten Eigenschaften aller Positionen in einem Zuge angepasst.
 - Um die Eigenschaften einer anderen Position zu bearbeiten, wählen Sie direkt im Eigenschaftenfenster den entsprechenden Positionstyp.
 - Mit Hilfe der Option Box können Sie auch ein geeignetes Rechteck aufziehen, das beide Stützen umfasst.

Schritt für Schritt



2.9 Geometrie verändern

Beim Konstruieren des FE-Modells kann es nachträglich erforderlich werden, Positionen in ihrer Geometrie oder Lage zu verändern (bspw. Positionen verschieben, kopieren, spiegeln, teilen oder vereinigen). Es sind zwei Vorgehensweisen zu unterscheiden:

- Positionsbezogen: Sie w\u00e4hlen eine Aktion f\u00fcr einen bestimmten Positionstyp (rechter Mausklick auf das Eingabesymbol der Position) und selektieren danach die Position, auf der die Aktion angewendet werden soll (z.B. einen Plattenbereich teilen).
- Aktionsbezogen: Sie selektieren eine oder mehrere Positionen und wählen dann die Aktion aus (bspw. mehrere Positionen zusammen verschieben).

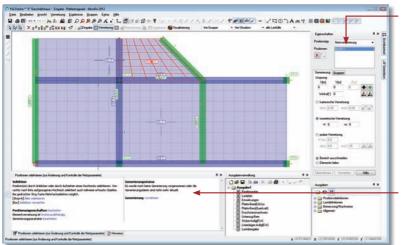
Einzelne Positionen lassen sich auch gezielt durch Klicken selektieren. Ohne Klick wird die Position beim Berühren mit der Maus angeleuchtet.

Aktionsbezogene Änderungen finden Sie im Kontextmenü. Führen Sie z.B. einen Rechtsklick auf das Symbol Plattenbereich setzen aus und Sie sehen die Option Teilen.

Schritt für Schritt

- 1. Im Beispiel werden die beiden rechten Stützen räumlich in die x-Richtung um 1,5 m nach links verschoben. Klicken Sie auf den Selektionspfeil Markieren (Esc) und selektieren Sie Stütze für Stütze bei gedrückter Strg-Taste.
- Klicken Sie in der waagerechten Symbolleiste auf das Symbol Verschieben. Richten Sie die Konstruktionslinien über die Taste T aus und legen Sie durch einen Mausklick in den Mittelpunkt der oberen Stütze den Anfangspunkt der Verschiebung fest.
- Fangen Sie auf die waagerechte Konstruktionslinie und drücken die Taste a, um den Abstand vom Stützenmittelpunkt und damit den Endpunkt der Verschiebung von "a = 1,5 m" exakt zu definieren.
- 4. Bestätigen Sie den Abstand nach links in x-Richtung mit der Enter-Taste.
- 5. Über das Symbol **Rückgängig** können sowohl positions- als auch aktionsbezogene Änderungen zurückgenommen werden.

Tipps & Tricks


 Damit beim Selektieren nicht auch ungewünschte Objekte mit berücksichtigt werden, lässt sich über das Flyout-Menü Selektion das Selektieren auf bestimmte Positionstypen einschränken (siehe auch Kapitel "4.4 Selektionsmodus einstellen" auf Seite 38).

2 10 FF-Modell berechnen

Die Berechnung des FE-Modells verläuft in drei Schritten:

- Zunächst wird die Netzstruktur definiert und über das Tragwerk gelegt.
- In einem zweiten Schritt wird die Geometrie des Netzes an die Randbedingungen des FE-Modells angepasst.
- Abschließend wird die Berechnung des FE-Modells durchgeführt. Das Ergebnis sind alle Schnittgrößen, Verformungsgrößen und Auflagergrößen, welche die Basis für die Bemessung der Positionen darstellen.

Die Netzparameter sind Positionseigenschaften und lassen sich wie solche bearbeiten

Selektieren Sie einen Plattenbereich. In den Eigenschaften finden Sie alle Optionen zur Vernetzung.

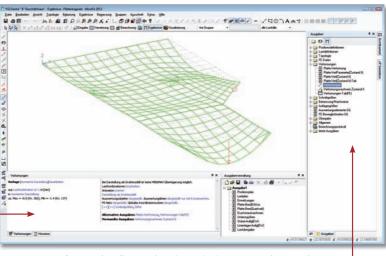
Informationen zur Vernetzung finden Sie im Fenster Eingabehilfen auf der rechten Seite.

- 1. Betätigen Sie das Symbol Vernetzung. Sie befinden sich jetzt im Generierungsmodus. Durch Selektion der einzelnen Plattenbereiche lassen sich die Vernetzungsparameter kontrollieren und verändern.
- 2. Kontrollieren Sie alle Parameter und führen anschließend über das entsprechende Symbol die Vernetzung aus.
- 3. Über das Symbol **Netzverfeinerung setzen** platzieren Sie im rechten Teil des oberen Plattenbereiches einen Netzverfeinerungsbereich. Hier wählen Sie Isometrische Vernetzung mit einer Maschenanzahl von "nr / ns = 6 / 6".
- 4. Starten Sie über das Symbol Berechnung die statische Berechnung des FE-Modells. Das Dialogfenster Berechnung wird angezeigt. Die Option stat. Berechnung ist aktiviert.
- 5. Führen Sie mit OK die Berechnung aus. Anschließend schaltet MicroFe automatisch in den Ausgabemodus und zeigt das Verformungsbild.

Beim Generieren des FE-Modells wird automatisch geprüft, ob alle Informationen aus den Positions- und Lasteigenschaften in das generierte Netz übertragen werden können. Das Ergebnis wird im Fenster Hinweise angezeigt.

Schritt für Schritt

Ergebnisse ausgeben


Verformungen kontrollieren

Die linear statische Berechnung liefert für jeden Lastfall Ergebnisse wie Verformungen, Schnittgrößen oder auch Auflagerkräfte. Die grafische Ausgabe ist interaktiv. Sie haben die Möglichkeit das Tragwerk nach unterschiedlichen Gesichtspunkten auszuwerten und dabei die Art der Ergebnisdarstellung selbst zu bestimmen. Diese Ergebnisgrößen werden in MicroFe immer lastkombinationsweise ausgewertet und dargestellt.

Einstellungsoptionen zur aktuell ausgegebenen Grafik werden in einem eigenen Fenster getroffen.

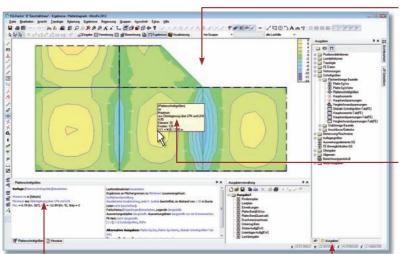
Der linke Bereich wird bei einem Ausdruck oder Plot mit ausgegeben (You see what you get).

Durch Klick auf eine blau dargestellte Option verändern Sie die Darstellung. Es können auch Auswahllisten oder Dialogfenster erscheinen, über die sich die Darstellung beeinflussen lässt.

Im Fenster Ausgaben werden alle Ausgabevarianten in einer Baumstruktur angeboten.

Schritt für Schritt

- 1. Standardmäßig wird nach der Berechnung zuerst die Verformungen in der 3D-Ansicht als Drahtmodell dargestellt. Hier werden die Extremalwerte mit einem Pfeil markiert. Sehen Sie die Verformungen nicht, wählen Sie auf der linken Seite das Symbol Verformungen.
- 2. Im gleichnamigen Fenster Verformungen finden Sie auf der linken Seite Informationen zum aktuellen Ergebnis. Auf der rechten Seite steuern Sie die Darstellung. Wechseln Sie hier die Darstellung von Drahtmodell auf Isoliniendarstellung.
- 3. Wechseln Sie auf der linken Seite im Fenster Verformungen von "Lastkombination LK-1" auf "Überlagerung über Lastfälle und Lastkombinationen". So werden alle maximalen Werte für alle Lastfälle auf einen Blick zusammengestellt.


- Ein Klick auf das entsprechende Symbol in der Symbolleiste ermöglicht die Ausgabe der grafischen Aufbereitung einer Berechnung oder Bemessung auf einem Drucker oder als großformatiger Plot auf einem Plotter.
- Zur Nachweisführung der Verformungen im Grenzzustand der Gebrauchstauglichkeit steht Ihnen das Modul "M352.de Verformungsnachweis Zustand II für Platten (ebene Systeme)" zur Verfügung, siehe Kapitel "3.8 Verformungsnachweis im gerissenen Zustand" auf Seite 27.

3.2 Schnittgrößen darstellen

Die Schnittgrößendarstellung für Plattenbereiche erfolgt in der Ebene oder perspektivisch als Iso-Linien, Iso-Flächen, Werte oder im Schnitt. Die Anzahl der Höhenlinien und die Dichte der Beschriftung können wahlweise verändert werden.

Innerhalb eines Plattenbereichs werden die Schnittgrößen und Spannungen in einem Knoten durch Mittelung aus den angrenzenden Elementen berechnet. Dadurch werden Schnittkraftsprünge – bspw. der Querkraft an einem Auflager – nicht im Knoten direkt, sondern nur von Nachbarknoten zu Nachbarknoten erfasst.

Die Abbildung zeigt die Biegemomente in r-Richtung (Option Moment mr) in der Isoflächendarstellung (Option Isoflächendarstellung) unter Berücksichtung der maximalen Schnittgrößen (Option MAX). Das FE-Netz wurde ausgeschaltet.

Im Ergebnismodus wird die Mauszeiger-Position ausgewertet und je nach Darstellung ein Tooltipp mit den Ergebnissen an der Mausposition angezeigt.

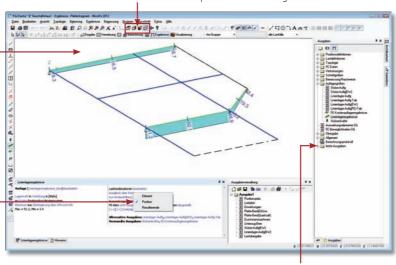
Über den Eintrag "Moment mr" aus "Lastkombination LK-1" wird das aktuell angezeigte Ergebnis erläutert. Durch Anklicken kann zwischen den Ergebnissen gewechselt werden.

Die Fenster "Eigenschaften" und "Ausgaben" sind hier übereinander angeordnet, siehe 4.1 auf Seite 32.

- 1. Doppelklicken Sie im Ausgabebaum auf den Eintrag Plattenschnittgrößen oder wählen Sie das gleichnamige Symbol in der vertikalen Symbolleiste.
- 2. Legen Sie im Fenster Plattenschnittgrößen auf der rechten Seite die gewünschte Sichtweise fest. Auf der linken Seite klicken Sie auf "Lastkombination LK-1" um auf "Überlagerung über Lastfälle und Lastkombination" umzuschalten. Jetzt haben Sie die Möglichkeit, durch Klick auf "Maximum" zwischen der Darstellung der minimalen und maximalen Schnittgröße umzuschalten.
- 3. Werden die Ergebnisse in der Wertedarstellung angezeigt, stellen Sie die Skalierung der Schrift durch Verwendung der entsprechenden Symbole oder durch Klick auf die Pfeile in den Darstellungsoptionen so ein, dass die Zahlen gut lesbar sind.
 - Für die Isoflächendarstellung können Sie den Farbverlauf über die Darstellungsoptionen über Vorlagen auswählen oder frei definieren. Gleiches gilt auch für die Abstufungen der Isoflächen und Isolinien.
 - Nutzen Sie die Positionstypen Auswertungspunkt, -linie und -fläche um Flächenergebnisse entsprechend des Typs auszuwerten, siehe Kapitel "3.9 Auswertungspositionen setzen" auf Seite 28.
 - Den Tooltipp schalten Sie über das nebenstehende Symbol ein und aus.

Schritt für Schritt

Auflagergrößen darstellen 3.3


Aus den gerechneten Werten werden die Auflagerreaktionen aufbereitet und an gelagerten Knoten wahlweise als Werte- oder als Pfeildarstellung ausgegeben. MicroFe unterscheidet je nach Auflagerart:

- Stützenkräfte
- Linienlagerergebnisse
- Flächenpressungen

Mit den Schaltern Draufsicht, Seitenansicht, Ansicht und 3D können Sie die entsprechende Darstellung wählen.

Die Abbildung zeigt die Linienlagerkräfte in einer 3D-Ansicht in t-Richtung (Option Lagerkraft in t-Richtung) und in einer Kurvendarstellung (Option Kurvendarstellung).

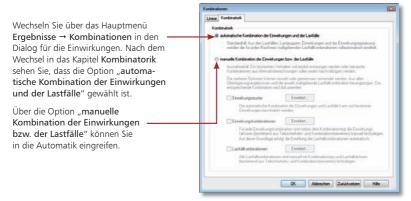
Für die Darstellung können Sie zwischen Ausgleich über Position, über Element und als Resultierende wählen.

Im Bereich Letzte Ausgaben lassen sich die zuletzt aufgerufenen Ausgaben in exakt derselben Einstellung per Mausklick wieder darstellen.

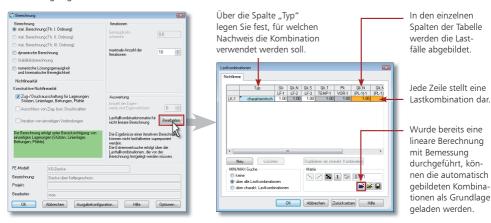
Schritt für Schritt

- 1. Doppelklicken Sie im Ausgabebaum auf den Eintrag Linienlagerergebnisse oder wählen Sie das gleichnamige Symbol in der vertikalen Symbolleiste.
- 2. Legen Sie in den Darstellungsoptionen die gewünschte Sichtweise fest. Sie können einstellen, ob die Ergebnisse in jedem Element (Option Auswertung in Element), gemittelt über die gesamte Position (Option Ausgleich über Position) oder als ein Kraftvektor (Option Resultierende als Kraftvektor) angezeigt werden sollen.
- 3. Über das Symbol Stützenkräfte werden auf Basis der berechneten Auflagerkräfte die Stützenkräfte berechnet und am Stützenmittelpunkt ausgegeben.

Tipps & Tricks



Um die Darstellung zu optimieren, können Sie die Auflagerkräfte überhöht darstellen. Klicken Sie hierzu in den Darstellungsoptionen auf die Option Symbolgrößen. Legen Sie im gleichnamigen Dialogfenster in der Spalte Wert den entsprechenden Skalierfaktor fest. Im obigen Beispiel wurde der Wert in der Zeile Auflager erhöht.



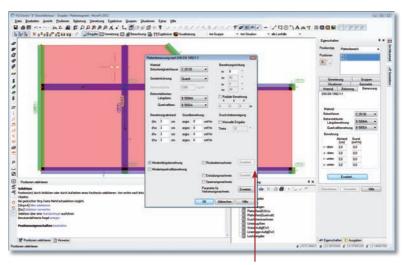
Bemessungsschnittgrößen steuern 3.4

Durch die Zuordnung der Lastfälle und der Belastungen zu Einwirkungen und der Typisierung kennt MicroFe für jede Last die zugehörigen Teilsicherheits- und Kombinationsbeiwerte. Da linear berechnete Ergebnisse einzelner Lastfälle superponierbar sind, können die erforderlichen Bemessungsschnittgrößen über die automatische Kombinatorik bestimmt werden.

Ergebnisse aus nichtlinearen Berechnungen (konstruktive Nichtlinearität) liegen nicht für jeden Lastfall vor und können deshalb nicht superponiert werden. Nichtlineare Berechnungen sind z.B. bei einseitigen Lagerungen oder Ausschluss von Zug- bzw. Druckkräften erforderlich. Deshalb sind vor der Berechnung Lastkombinationen zu erstellen, in denen die Beteiligung einzelner Lastfälle definiert ist.

Sie erreichen den Dialog Lastkombinationen über den Dialog Berechnung. Hier wird der Schalter Bearbeiten aktiv, sobald konstruktive Nichtlinearität berücksichtigt werden soll.

MicroFe bietet einen einfachen und schnellen Weg für die Bemessung einer nichtlinearen Berechnung die notwendigen Kombinationen zu erzeugen. Übernehmen Sie Bemessungskombinationen aus einer linearen Berechnung und passen diese bei Bedarf an.


Tipps & Tricks

3.5 Bemessung durchführen

Bevor eine Bemessung durchgeführt wird, können alle Bemessungsparameter kontrolliert bzw. angepasst werden. Die Bemessungsparameter sind grundsätzlich unabhängig von den Material- und Geometriewerten der Position.

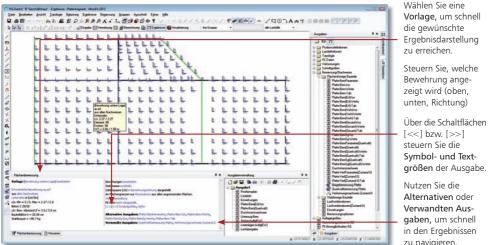
Achten Sie deshalb darauf, dass insbesondere die gewählte Betongüte zum E-Modul der Position passt. Sollte der E-Modul angepasst werden müssen, ist dies im Eingabemodus durchzuführen. Das FE-Modell muss in diesem Fall neu generiert und berechnet werden.

Die Grundbewehrung ist eine feste Bewehrungsmenge, die z.B. als Montagebewehrung notwendig ist. Bei der Ergebnisausgabe wird die hier eingegebene Grundbewehrung in der grafischen Darstellung von der errechneten Biegebewehrung abgezogen, so dass die zusätzlich notwendige Bewehrung direkt ersichtlich ist.

Schritt für Schritt

- 1. Sie haben alle Lastfälle den Einwirkungen zugeordnet. Für die Ermittlung der Bemessungsschnittgrößen ist die Option "automatische Kombination der Einwirkungen und der Lastfälle" gewählt. Nun werden alle maßgebenden Kombinationen für die jeweiligen Nachweise automatisch nach DIN 1055-100 oder DIN EN 1990 ermittelt.
- 2. Aktivieren Sie den Selektionsmodus. Markieren Sie über das Eigenschaftenfenster oder auch direkt im Zeichenbereich die Plattenbereiche und Unterzüge und definieren Sie die Bemessungsparameter der Positionen. Schließen Sie die Festlegung der Bemessungsparameter jeweils mit Übernehmen ab.

Tipps & Tricks


13

- Soll z.B. ein Rissnachweis durchgeführt oder die Druckstrebenneigung manuell vorgegeben werden, wird dies über die Schaltfläche Erweitert festgelegt.
- Es besteht die Möglichkeit, anstelle der automatischen Kombinatorik manuelle Kombinationen für die Bemessung zu definieren. Es müssen hierbei Kombinationen für alle Kombinationstypen gebildet werden, die für die gewünschten Nachweise erforderlich sind (bspw. quasi-ständige Kombinationen, wenn der Rissbreitennachweis geführt werden soll).

Bemessung darstellen 3.6

Für die Biegebemessung der Platte wird die statisch erforderliche Bewehrung berechnet. Haben Sie für die Biegebemessung eine Grundbewehrung festgelegt, wird diese standardmäßig bei der grafischen Darstellung berücksichtigt und von der errechneten Menge abgezogen. In der Standardeinstellung, die Sie über das Hauptmenü im Ergebnisbereich Bemessung → Optionen finden, ist bei Bemessungsverlauf die Option "erforderliche Bewehrung (schnelle Bemessung)" ausgewählt. Sie erhalten eine erforderliche Bewehrungsmenge aus allen Nachweisen. Alternativ hierzu kann die Bewehrung auch mit allen nachweisbezogenen Einzelwerten ausgegeben werden. Es wird die erforderliche Bewehrungsmenge z. B. für die Biegebemessung, den Rissbreiten- und Spannungsnachweis aufgeführt.

gaben, um schnell in den Ergebnissen zu navigieren.

Starten Sie die Biegebemessung der Platten über das Symbol Biegebemessung Platte. Nach der Bemessung bekommen Sie die erforderliche Bewehrung mit der Vorlage Bewehrung Isoflächen als Isoflächen dargestellt.

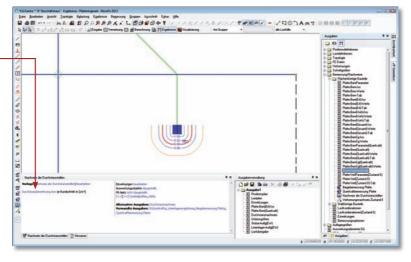
- 1. Wählen Sie im unteren Fenster Flächenbemessung die Vorlage Bewehrung untere Lage. Passen Sie die Schriftgröße an, bis alle Zahlenwerte gut lesbar sind.
- 2. Im Fenster Flächenbemessung klicken Sie auf Erforderliche Bewehrung as,erf. Alle Bemessungsergebnisse werden angeboten. Sehen Sie sich die Bemessungsschnittgröße mEd an und wechseln zurück zur erforderlichen Bewehrung.
- 3. Klicken Sie unter Alternative Ausgaben auf Platte-Bem-Iso, Sie bekommen in einem zusätzlichen Fenster die zugehörige Druckausgabe angezeigt.
 - Je nach eingestelltem Nachweis wie Rissbreiten- oder Spannungsnachweis stehen unterschiedliche Ergebnisse zur Verfügung (beim Tragfähigkeitsnachweis kann kein Grenzdurchmesser dargestellt werden).
 - Nutzen Sie bei der Isolinien- und Isoflächendarstellung die Möglichkeit, die Abstufungen manuell einzustellen. Wählen Sie z.B. bei Isoliniendarstellung statt Äquidistante Isoabstufung die manuelle Isoabstufung Q-Matten.

Schritt für Schritt

3.7 Details und Anschlüsse nachweisen

MicroFe bietet eine umfangreiche Bemessung der Platten-, Unterzugs- und Stabpositionen in Stahlbeton. Im Zusammenspiel mit EuroSta.stahl und EuroSta.holz auch die Bemessung von Stab-Positionen in Stahl und Holz.

In Tragwerken sind auch Detail- und Anschlusspunkte zu konstruieren und nachzuweisen. Hier bietet MicroFe eine leistungsfähige Anbindung an die Nachweismodule der BauStatik. Das Beispiel erweitern Sie im Anschluss um den Nachweis für einen durchstanzgefährdeten Bereich um eine Nachweisstelle mit dem MicroFe-Modul M350.de Durchstanznachweis für Platten.


Über den Klick auf "Durchstanzbewehrung Asw" haben Sie Zugriff auf alle Teilergebnisse rund um den Nachweis.

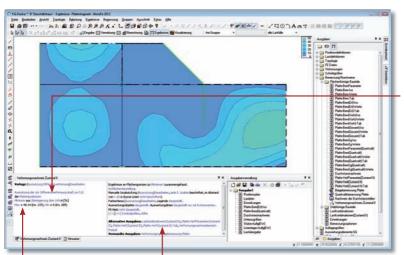
Sie finden unter den Alternativen Ausgaben direkt die zugehörige Druckausgabe im DIN A4 Format.

Alle Werte für weiterführende Nachweise im Baustatik-Modul S290.de werden automatisch erzeugt.

Schritt für Schritt

- Wechseln Sie in den Eingabebereich und selektieren das Linienlager. Klicken Sie auf den Hook am unteren Ende des rechten Lagers und verschieben dieses mit Hilfe der Taste M auf den halben Abstand.
- 2. Platzieren Sie eine Nachweis-Position **Durchstanzstelle setzen** am Wandende. Dank der Eingabeoption "automatisch an **Position setzen**" reicht ein Klick an das Wandende.
- 3. Führen Sie die Berechnung durch und starten Sie die Bemessung der Durchstanzstelle über das Symbol Nachweis der Durchstanzstellen.
- 4. In der Ausgabe sehen Sie die untersuchten Rundschnitte mit erforderlicher Durchstanzbewehrung sowie den kritischen und den äußeren Rundschnitt.
- 5. Wechseln Sie in die BauStatik und legen Sie für eine weiterführende Bemessung, z.B. mit Dübelleisten eine neue Position mit dem Modul S290.de an. Wählen Sie im Dialog Position neu die Option Position neu zum Detailnachweis aus. Hier werden alle Detailnachweise wie z. B. die Durchstanznachweise aufgeführt.

Tipps & Tricks


MicroFe bietet für die Ermittlung der Durchstanzkraft spezielle Lösungsansätze. Somit ist sichergestellt, dass z.B. bei Decken mit durchlaufender Stütze nur der Anteil der Stützenlast im Nachweis berücksichtigt wird, der aus der anschließenden Decke eingeleitet wird.

Verformungsnachweis im gerissenen Zustand 3.8

MicroFe bietet für die Nachweisführung der Verformungen im Grenzzustand der Gebrauchstauglichkeit das effektive Zusatzmodul M352.de Verformungsnachweis Zustand II für Platten (ebene Systeme) an.

Das Beispiel erweitern Sie nun um den Nachweis der Verformungen.

Über den Klick auf "Ausnutzung der zul. Differenzverformung" haben Sie Zugriff auf alle Teilergebnisse rund um den Nachweis.

Nutzen Sie auch die Vorlagen, um besonders schnell wichtige Ergebnisse wie den Nachweis in einer typischen Darstellung anzusehen.

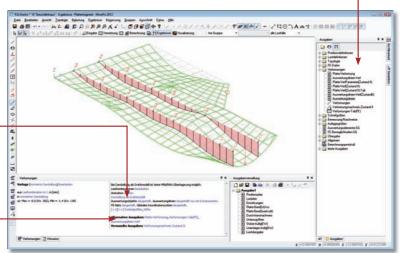
Die Ausnutzung bietet nur Ergebnisse, wenn Nachweisbereiche platziert wurden.

Unter den Alternativen Ausgaben finden Sie direkt die zugehörige Druckausgabe im DIN A4 Format.

1. Wichtig für die Berechnung der Steifigkeiten ist die Bewehrung in den Platten. Wechseln Sie daher in den Eingabebereich, selektieren beide Plattenbereiche und wählen eine Grundbewehrung oben und unten von "as = 1,88 bm²", entsprechend einer O188 Matte.

- 2. Wählen Sie das Symbol Verformungsnachweisbereich setzen, um die Verformungsrestriktionen festzulegen. Bleiben Sie bei der Voreinstellung "absolut" und platzieren einen Nachweisbereich über das gesamte System.
- 3. Starten Sie die Berechnung der Verformungen im Ergebnisbereich über das Symbol Verformungsnachweis Zustand II. Wählen Sie die Vorlage "Ausnutzung Differenzverformung". In der Isoflächendarstellung erkennen Sie, dass alle Bereiche in der Platte ausreichend nachgewiesen wurden.
 - Nutzen Sie sowohl die Grundbewehrung als auch die Zulagebewehrung, um eine realistische Bewehrungsverteilung in den Platten zu erzeugen, da diese bei der Verformungsberechnung einen entscheidenden Einfluss hat.
 - Zur Auswahl einer Grundbewehrung eignet sich bei der erforderlichen Bewehrung die Darstellungsoption "Q-Matten" ideal.
 - Sie können in Ihrem Modell mehrere Verformungsnachweisbereiche, z.B. für Innenund Kragbereiche definieren.

Schritt für Schritt



3.9 Auswertungspositionen setzen

Mit den Auswertungspositionen können Sie Flächenergebnisse um punkt-, linien- oder flächenförmige Auswertungen ergänzen. Die Auswertungspositionen werden an die gewünschten Stellen oder Bereiche in das Modell platziert.

Sie können Auswertungslinien sowohl im Eingabe- als auch im Ergebnisbereich in das System eintragen oder bearbeiten.

Über die Eigenschaften der Auswertungspositionen steuern Sie, für welche Ergebnisse die Position verwendet werden soll. Auch hier stehen Ihnen Vorlagen zur Auswahl.

Steuern Sie in der aktuellen Darstellung eines Flächenergebnisses, ob die Auswertungslinien dargestellt werden oder nicht

Auch für die Auswertungslinien haben Sie über Alternative Ausgaben die zugehörige Druckausgabe direkt im Zugriff.

Schritt für Schritt

- Legen Sie direkt im Ergebnisbereich über das Symbol Auswertungslinie setzen zwei parallel verlaufende Auswertungslinien zwischen den Unterzügen an. Nutzen Sie hier auch die Vorlagen, um die gewünschten Ergebnisse der Auswertungslinie zu bestimmen.
- 2. Wechseln Sie zur Darstellung der Verformungen mit der Darstellung als Drahtmodell in r-Richtung an der Unterseite.
- Neben der Verformungsdarstellung sehen Sie auch die Liniendarstellungen entlang der Auswertungslinien.

- In den Positionseigenschaften der Auswertungslinien steuern Sie, welche Ergebnisse an der jeweiligen Auswertungslinie angezeigt werden. Diese Entscheidung hat auch Einfluss auf den Ausgabeumfang. Wählen Sie daher gezielt die gewünschten Ergebnisse aus.
- Wenn Sie bei der Ergebnisdarstellung nicht wissen, in welche Richtung die lokalen Elementkoordinatensysteme r- und s-Richtung ausgerichtet sind, können Sie sich diese über das Symbol Elementkoordinatensysteme anzeigen lassen.

3.10 Plotausgaben erzeugen

eine Wertedarstellung zu erreichen.

Das aktuell dargestellte interaktive Ergebnis kann für beliebige Blattgrößen ausgegeben werden. Dies erreichen Sie über die Schalter Plotausgaben erzeugen.

Die Auswahl der Blattgröße erfolgt im gleichnamigen Dialog durch Festlegung eines Layouts und eines darin enthaltenen Seitenlayouts. Bei allen Vorlagen-Layouts sind die typischen DIN A4 bis A0 Formate sowohl hoch- als auch guerformatig enthalten.

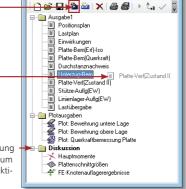
Durch die Auswahl der Ausrichtung lassen sich Plotausgaben auch drehen.

1. Wechseln Sie das Ergebnis der Biegebemessung für Platten durch Klick auf den Schal-Schritt für Schritt ter Biegebemessung Platte. Wählen Sie die Vorlage Bewehrung untere Lage, um

- 2. Betätigen Sie den Schalter Plotausgaben erzeugen, um das aktuelle Bemessungsergebnis auf DIN A3 guer auszugeben. Wählen Sie auf der linken Seite im Dialog Maßstab anpassen aus.
- 3. Wiederholen Sie den Vorgang für die obere Bewehrungslage sowie für das Ergebnis der Querkraftbemessung.
- 4. Alle Ergebnisse im Modell sind im Fenster Ausgaben sortiert zu finden. Am unteren Ende der Liste werden die letzten Ausgaben zum Modell im gleichnamigen Ordner gelistet. Von hier können Plotausgaben per Drag & Drop in Ausgaben übernommen werden.

• Jede in der Ausgabe enthaltene interaktive Grafik (z.B. eine Plotausgabe) kann per Doppelklick wieder angezeigt werden. Führen Sie Änderungen am Ergebnis oder an der Darstellung aus, können diese über den Schalter aktuelle Einstellungen übernehmen der Ausgabe zugewiesen werden.

3.11 Statik zusammenstellen


Alle Ausgaben lassen sich innerhalb der Ausgabenverwaltung in beliebiger Anzahl und Reihenfolge zusammenstellen. Neben allen Einträgen aus dem Ausgabebaum (einfach per Drag & Drop in das Fenster Ausgabenverwaltung ziehen) kann auch die aktuell dargestellte interaktive Ergebnisgrafik zu einer Ausgabenzusammenstellung hinzugefügt werden (Taste Strg+E).

Beim Druck einer Zusammenstellung werden alle darin enthaltenen Ausgaben auf Basis der aktuellen Berechnungsergebnisse neu erzeugt. Die Darstellung interaktiver grafischer Ausgaben erfolgt unter Berücksichtigung der jeweils gespeicherten Einstellungen wie Symbolgröße, Farben, Zoomausschnitt oder Perspektive.

Über das Symbol Foto kann die aktuelle interaktive Ergebnisdarstellung in eine Ausgabe übernommen werden.

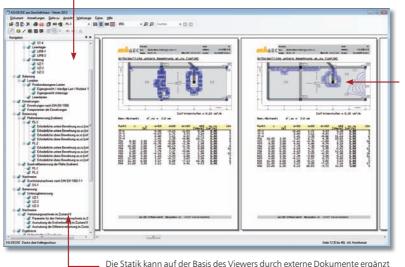
Die Reihenfolge der Ausgaben in einer Zusammenstellung kann per Drag & Drop geändert werden.

Eine Zusammenstellung dient nicht nur zur Erstellung eines druckfertigen Statikdokuments, sie kann auch zum Sammeln verschiedener Details während einer interaktiven Ergebnisdiskussion verwendet werden.

Schritt für Schritt

- 1. Mit der Ausgabe1 steht standardmäßig eine komplette und prüffähige Ausgabe bereit. Diese Ausgabe können Sie um weitere Ergebnisse aus den Ausgaben ergänzen. Wählen Sie z.B. die Ausgabe Platte-Verf(ZustandII) aus dem Ordner Verformungen und fügen diese der Drag & Drop der Ausgabe zu.
- 2. Legen Sie in der Ausgabenverwaltung über den Schalter Neue Zusammenstellung eine neue Ausgabe mit dem Namen Plotausgaben an. Wählen Sie im Fenster Ausgaben den Ordner Letzte Ausgaben. Hier sind die zwei Plotausgaben gelistet, die im vorigen Kapitel erzeugt wurden.
- 3. Alle Ergebnisse im Modell sind im Fenster Ausgaben sortiert zu finden. Am unteren Ende der Liste werden die letzten Ausgaben zum Modell im gleichnamigen Ordner gelistet. Von hier können Plotausgaben per Drag & Drop in Ausgaben übernommen
- 4. Sie haben somit zwei Ausgaben je nach Blattformat und somit z.B. je Ausgabegerät Drucker, Plotter erzeugt.

- Ausgaben können geladen und gespeichert werden, um einheitlich Ausgaben modell- und projektübergreifend zu erreichen. Auch kann der Umfang der Ausgabe1, die standardmäßig vorhanden ist, verändert werden.
- Für die Einbindung von MicroFe-Ausgaben in die BauStatik nutzen Sie das Modul S019 MicroFe einfügen. Dazu greifen Sie in S019 auf eine der Ausgaben zu.



3.12 Statik ausgeben

Der mb-Viewer ist die zentrale Druckvorschau für alle Ausgaben. Er bietet unter anderem auch die Möglichkeit, Ausgaben aus mehreren Dokumenten zusammenzustellen und die Ausgaben vor dem Drucken mit Kommentaren und Anmerkungen zu versehen.

Jede Ausgabe wird projektbezogen gespeichert und kann per Knopfdruck wieder aufgerufen werden.

Die Ausgabe ist in einzelne Kapitel untergliedert. Diese werden in Form eines Verzeichnisbaumes dargestellt. Durch Doppelklick auf einen Baumeintrag wird das entsprechende Kapitel geöffnet.



Hier werden die aktuell im Baum durch Doppelklick selektierten Komponenten der Ausgabe dargestellt.

1. Öffnen Sie durch Doppelklick auf die Baumeinträge die einzelnen Kapitel der Ausgabe und prüfen Sie die Ergebnisse.

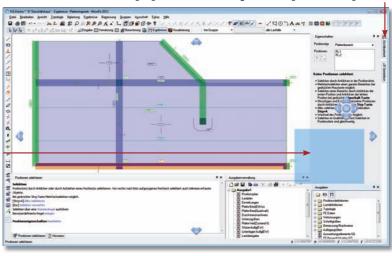
werden. Diese werden grundsätzlich am Dokumentende angefügt.

Schritt für Schritt

3. Geben Sie die Ausgabe auf dem angeschlossenen Drucker aus oder versenden Sie das Dokument als Anhang einer E-Mail. Auch der integrierte PDF-Export leistet gute Dienste, in dem er die Daten schnell einem Projektbeteiligten zukommen lässt.

4. Wechseln Sie in die BauStatik und legen dort eine neue Position mit dem BauStatik-Modul S019 MicroFe einfügen an. Sie können nun eine Ausgabe der MicroFe-Ausgabenverwaltung auswählen. Die Ausgabe ist Teil des Statik-Dokuments.

• Alle ausgegebenen Dokumente lassen sich beliebig mit anderen Projektbeteiligten austauschen, auch wenn diese nicht über mb-Programme verfügen. Nutzen Sie hierzu wahlweise den lizenzfreien mb-Viewer oder den Export aus dem Viewer im PDF-


Arbeiten optimieren

Arbeitsfenster einrichten

MicroFe verfügt über eine überaus flexible Fenstertechnik, dies es Ihnen erlaubt, die für den jeweils aktuellen Arbeitskontext optimale Benutzeroberfläche zu konfigurieren.

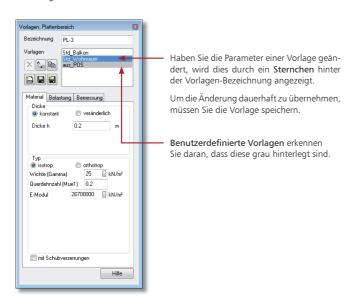
Jedes Fenster kann individuell positioniert werden. Dazu wird das Fenster an der Titelzeile angeklickt und mit Drag & Drop verschoben. Ein Assistent simuliert über eine Vorschau die neue Anordnung. Zusätzlich besitzen alle Fenster in der Titelleiste ein Pin-Symbol. Beim Klick auf dieses Symbol wird das Fenster minimiert und seitlich dargestellt. Der Inhalt des Fensters wird nun als Flyout beim Berühren angezeigt. Ein weiterer Klick verankert das

Minimierte Fenster klappen automatisch auf, wenn Sie mit der Maus über die Schaltfläche fahren. Wird ein Fenster über ein anderes gelegt, werden diese als Registerkarten geschachtelt angeordnet.

Ein im Hintergrund sichtbarer Drag&Drop-Assistent hilft Ihnen, die Fenster an der aewünschten Stelle zu positionieren.

Schritt für Schritt

- 1. Klicken Sie das Fenster Ausgaben in der Titelzeile an und halten die Maustaste gedrückt. Das Fenster hängt nun an der Maus und wird als blaues Rechteck dargestellt.
- 2. An den Rändern und im Mittelpunkt der vorhandenen, platzierten Fenster erscheinen kleine blaue Symbole, die das Einfügen in die Fensteranordnung ermöglichen.
- 3. Ziehen Sie das Fenster Ausgaben in die Mitte des Fensters Eigenschaften. Lassen Sie nun die Maustaste los und die beiden Fenster liegen übereinander.
- 4. Zwischen den Inhalten der beiden Fenster kann über die jetzt vorhandenen Register "Eigenschaften" und "Ausgaben" gewechselt werden.


- Fenster können mit Doppelklick auf die Titelzeile herausgelöst und wieder eingebunden werden.
- Fenster können über das Menü **Ansicht** → **Fenster** ein- und ausgeschaltet werden.
- Über das Menü Ansicht → Standardansicht → Wiederherstellen stellen Sie die Standardkonfiguration der Fenster und Symbolleisten wieder her. Mit der Menü-Option Ansicht → Standardansicht → Speichern kann die aktuelle Konfiguration von Fenstern und Symbolleisten gespeichert werden.

Vorlagen verwalten 4.2

Wie Sie bereits beim Erzeugen Ihres FE-Modells feststellen konnten, werden alle Positionen (Bauteile, Lagerbedingungen und Lasten) auf der Grundlage von Vorlagen eingegeben. Diese Vorlagen werden installiert und sind fester Bestandteil des Programms.

Darüber hinaus besteht die Möglichkeit, Vorlagen zu duplizieren und entsprechend anzupassen oder die Parameter einer Position als neue Vorlage zu übernehmen. Damit lassen sich für wiederkehrende Eingaben die jeweiligen Standardwerte auch projektübergreifend hinterlegen.

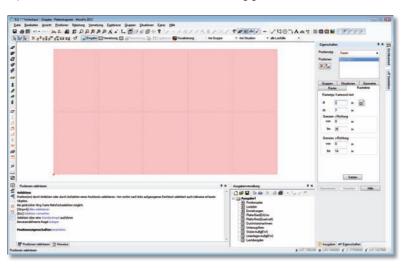
1. Eine Standardvorlage soll dupliziert und angepasst werden. Sie befinden sich bspw. in der Vorlage für Stützen und haben die Vorlage in der Liste der Vorlagen selektiert.

Schritt für Schritt

2. Duplizieren Sie diese durch Klick auf das Symbol Vorlage duplizieren. Passen Sie die Parameter an und benennen Sie die duplizierte Vorlage anschließend über das Symbol Vorlage umbenennen entsprechend um.

3. Im nächsten Schritt soll aus den Eigenschaften einer bereits gesetzten Stützen-Position eine entsprechende Vorlage abgeleitet werden, weil Sie diese noch anderweitig verwenden wollen. Sie befinden sich weiterhin im Vorlagenfenster für Stützen.

- 4. Klicken Sie in der Vorlagenverwaltung auf das Symbol neue Vorlage aus Position und selektieren Sie anschließend die Stützen-Position im Zeichenbereich durch Mausklick. Die Vorlage aus Pos wird angelegt.
- 5. Geben Sie der neuen Vorlage abschließend einen entsprechenden Namen.
 - Es lassen sich nur benutzerdefinierte Vorlagen löschen.
 - Vorlagen aus der Standardinstallation k\u00f6nnen nicht aus dem Programm entfernt werden.


Hinterlegungsobjekte nutzen

4.3.1 Raster einfügen

Raster ermöglichen für Bauwerke mit gleichmäßigem Grundriss, z.B. Hallentragwerke eine schnelle Eingabe. Hierzu stehen verschiedene Arten von Rastern zur Wahl, die im Modell auch mehrfach platziert werden können. In 3D-Modellen können Raster frei im Raum platziert werden. Die folgenden Raster können gewählt werden:

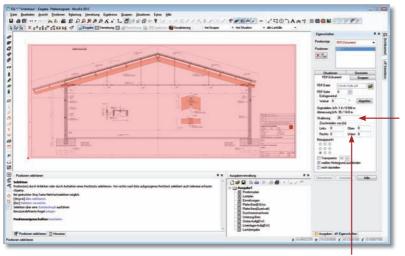
- Kartesisch fest ist ein rechtwinkliges Raster mit gleichen Abständen jeweils für die Linien in r- und s-Richtung.
- Kartesisch frei ist ein rechtwinkliges Raster mit beliebig zu definierenden Abständen zwischen zwei Rasterlinien, getrennt für r- und s-Richtung.
- Polar fest ist ein konzentrisches Raster mit gleichen Abständen zwischen den Kreislinien und gleichen Winkelschritten zwischen den Radiallinien.
- Polar frei ist ein konzentrisches Raster, bei dem die Abstände der Ringlinien zum Mittelpunkt und die Winkelschritte der Radiallinien beliebig gewählt werden.

Nutzen Sie auch bei Rastern die Vorlagen um schnell auf Standard-Raster zurückzugreifen.

Schritt für Schritt

- 1. Bei einem 3D-Modell wählen Sie zuerst die Arbeitsebene, in der Sie das Raster platzieren wollen
- 2. Betätigen Sie den Schalter Raster setzen, entscheiden sich über die Auswahl der entsprechenden Vorlage für ein Raster Kartesisch frei und tragen die Rasterabmessungen unter Rasterlinie ein.
- 3. Mit einem Klick platzieren Sie das Raster im Modell bzw. in der gewählten Arbeitsebene.
- 4. Alle Rasterlinien sowie Schnittpunkte der Rasterlinien stehen jetzt für die Positionseingabe als Fangpunkte bereit.

Tipps & Tricks


Raster können in dem Modell auch kopiert und rotiert werden. Raster lassen sich auch zu Geschossen oder Gruppen zuweisen.

4.3.2 PDF oder Grafik einfügen

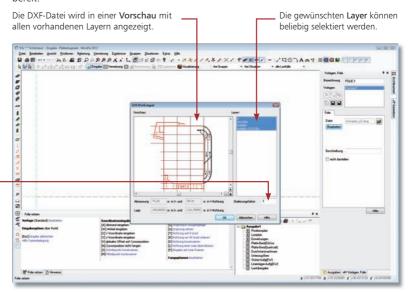
Liegen Pläne vor, so können diese eingescannt und ebenfalls als Eingabeunterstützung mit dem Zusatzmodul M140 PDF, BMP, JPG als Eingabehilfe für MicroFe und EuroSta in Ihr Modell eingefügt werden. Auf demselben Weg lassen sich auch PDF-Dateien für die Eingabe hinterlegen.

Kennen Sie den Maßstab der Grafik oder des Plans, können Sie diesen direkt bei der Skalierung eintragen.

Wählen Sie über Seite und Zuschnitt genau den Bereich aus, den Sie benötigen. In den Eigenschaften lassen sich die Skalierung, der Winkel sowie die Transparenz steuern.

- 1. Wählen Sie den Schalter PDF setzen, um eine Datei auf Ihrem Rechner oder in Ihrem Netzwerk auszuwählen.
- 2. Im Eigenschaftendialog auf der rechten Seite sind die Optionen der hinterlegten PDF-Datei aufgeführt. Hier finden Sie auch den Faktor zur Skalierung.
- 3. Nutzen Sie den Schalter Abstand messen um die aktuelle Skalierung zu prüfen. Passen Sie den Faktor an und prüfen ggf. nachträglich erneut die Skalierung.
- 4. Mit einem Klick platzieren Sie die PDF-Datei in dem Modell. Für die folgende Positionseingabe können Sie sich an der Grafik orientieren.

Schritt für Schritt



Bei der Anpassung des Skalierungsfaktors können Sie direkt arithmetische Ausdrücke eintragen. Sie sparen sich somit die Ermittlung mit dem Taschenrechner.

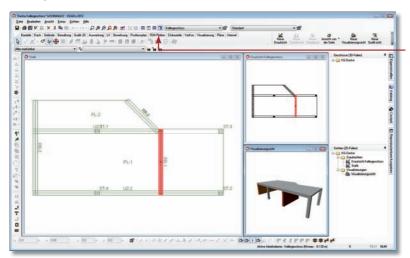
4.3.3 Folien einfügen

Zur Erfassung der Geometrie können Sie als Grundlage Folien im DXF oder DWG Format in das Modell importieren. Für die Eingabe der Positionen stehen diese als Fangpunkte bereit.

Über die Angabe eines Skalierungsfaktors lassen sich Folien jeglichen Maßstabs einfügen. Die Gesamtabmessung wird zur Kontrolle unter Berücksichtigung des Skalierfaktors angegeben.

Schritt für Schritt

- 1. Im folgenden Beispiel soll eine Folie importiert werden. Sie haben im Vorfeld über den Projekt-Manager ein neues Modell angelegt und geöffnet.
- Sobald Sie die gewünschte DXF-Datei geöffnet haben, wird der Import-Assistent gestartet. In diesem wird die zu importierende DXF-Folie in einer Vorschau angezeigt.
 Selektieren Sie in der Liste die Layer, die übernommen werden sollen.
- 3. Bestimmen Sie die Skalierung oder auch die Positionierung der Folie.
- 4. Wählen Sie den Schalter **Folie setzen**, um eine Datei auf Ihrem Rechner oder in Ihrem Netzwerk auszuwählen.
- 5. Schließen Sie den Dialog über OK und setzen Sie die Folie in dem Modell ab.
- 6. Nach dem Import stehen zur Positionseingabe die Linien und Punkte der Folie zum Fangen bereit.



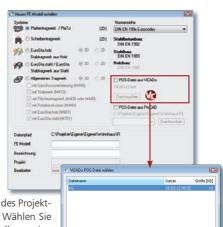
- Zusätzlich können beim Import alle Zeichenelemente so verschoben werden, dass die Zeichnung in der Nähe des Ursprungs eingefügt wird.
- Wird die Folie gerade nicht benötigt, kann sie über das entsprechende Symbol unsichtbar geschaltet werden.
- Das Fangen auf Folien kann getrennt von der Steuerung der Sichtbarkeit gewählt werden.

4.3.4 Positionsdatei aus ViCADo übernehmen

Liegt Ihnen ein ViCADo-Modell vor, in dem das zu bemessende Bauteil, z.B. eine Stahlbetondecke enthalten ist, bietet Ihnen mb WorkSuite einen besonders schnellen und effektiven Weg zur Bemessung. Erzeugen Sie einfach und schnell MicroFe-Positionen direkt in ViCADo. So entsteht mit wenigen Klicks aus einem CAD-Modell mit ViCADo eine Bemessung mit MicroFe.

In der Was-Leiste finden Sie das Register FEM-Platten.

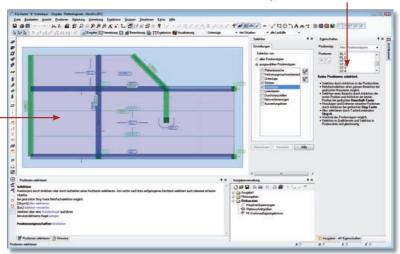
Mit dem Schalter MicroFe-Übergabe öffnen Sie die Wie-Leiste und können die FEM-Positionen erzeugen


1. Legen Sie eine neue Draufsicht an und steuern Sie über das Kontextmenü Sichtbarkeit die Darstellung, dass z.B. die Decke sichtbar ist.

Schritt für Schritt

2. Wechseln Sie in der Was-Leiste in das Register FEM-Platten und wählen Sie den Schalter MicroFe-Übergabe aus.

- 4. Nun können Sie schon direkt in ViCADo die FEM-Positionen bearbeiten oder anpassen. Trimmen Sie z.B. aus optischen Gründen die Decken-Positionen auf die Achsen der Wand-Positionen.
- 5. Schließen Sie die Übergabe mit dem Speichern der FEM-Positionen ab.
- 6. Legen Sie im Register MicroFe EuroSta des Projekt-Managers ein neues MicroFe Modell an. Wählen Sie hierzu im Dialog Neues FE-Modell erstellen rechts die Option POS-Datei aus ViCADo übernehmen. Klicken Sie nun auf die erzeugte Übergabe.



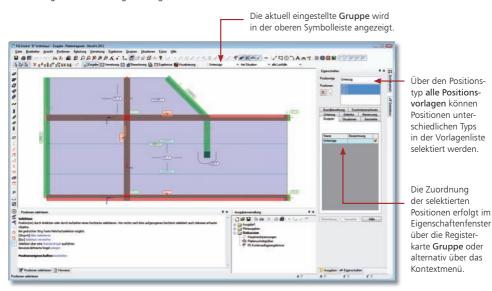
4.4 Selektionsmodus einstellen

Beim Selektieren kann es gerade bei komplexen FE-Modellen hilfreich sein, wenn man im Selektionsmodus die Auswahl auf einzelne Positionstypen beschränkt, um das gezielte Selektieren bestimmter Positionen zu erleichtern. Diese Vorgehensweise ist beispielsweise dann sinnvoll, wenn die Selektion per Box durchgeführt wird.

Legen Sie fest, welche Positionstypen selektierbar sein sollen.

Im Zeichnungsbereich werden zwar durch die Einschränkung der Selektion noch alle Positionen angezeigt, es sind aber nur noch die Positionen der ausgewählten Selektionstypen für die Bearbeitung zugänglich.

Schritt für Schritt


- 1. Im folgenden Beispiel sollen Stützen und Linienlager durch das Aufziehen einer Box selektiert werden. Blenden Sie über das Flyout-Menü das Fenster **Selektion** ein.
- 2. Wählen Sie die Option ausgewählte Positionstypen und setzen Sie in alle Kontrollkästchen ein Häkchen, deren Positionstyp selektierbar sein soll.
- 3. Bestätigen Sie Ihre Angaben mit Übernehmen.
- 4. Aktivieren Sie in der Optionsleiste die Option **Box** und ziehen Sie über den gesamten Zeichnungsbereich einen Rahmen auf. Es werden nur Stützen und Linienlager markiert.

- Über das Fenster Sichtbarkeit können Sie die im Zeichnungsbereich dargestellten Objekte auf die Auswahl der selektierbaren Positionstypen einschränken.
- Blenden Sie hierzu im Selektionsmodus das Fenster Sichtbarkeit ein. Aktivieren Sie die Registerkarte Positionstypen und wählen Sie Anzeige der selektierbaren Positionstypen. Die Auswahl wird mit Übernehmen bestätigt.

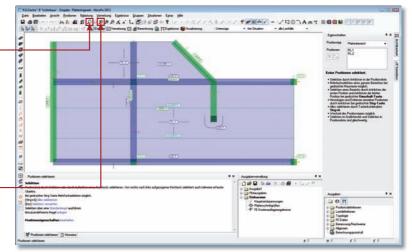
4.5 Komplexe Tragwerke gliedern

Bei komplexen FE-Modellen bietet es sich ebenso an, diese in einzelne Gruppen (bspw. in einzelne Bauabschnitte oder Fertigteile) zu unterteilen, um die Übersichtlichkeit durch gezielte Sichtbarkeit einzelner Gruppen sowohl bei der Eingabe dieser Modelle als auch bei der Ergebnisdarstellung zu steigern.

1. Im folgenden Beispiel sollen Stützen und Linienlager in einer Gruppe zusammengefasst werden. Wählen Sie den Befehl Gruppen → Neu und legen Sie im angezeigten Dialogfenster den Namen der Gruppe fest.

Schritt für Schritt

- 2. Um die Positionen der Gruppe zuzuordnen, sind diese im Vorfeld zu selektieren. Die Selektion kann (wie im vorangegangenen Beispiel gezeigt) im Zeichnungsbereich über das Aufziehen einer Box oder über das Eigenschaftenfenster erfolgen. Wir wählen im Beispiel im Eigenschaftenfenster den Positionstyp alle Positionstypen und markieren die gewünschten Positionen in der Positionsliste.
- 3. Setzen Sie in der Registerkarte Gruppen ein Häkchen in das Kontrollkästchen der Gruppe und bestätigen Sie dies mit Übernehmen. Damit sind alle markierten Positionen der Gruppe zugeordnet.
- 4. Um die Positionen einer Gruppe darzustellen, ist das Fenster Sichtbarkeit zu öffnen. Hier können Sie in der Registerkarte Gruppe angeben, welche Gruppe(n) sichtbar geschaltet werden soll(en).
 - Nicht nur für die Eingabe, auch für die Ausgabe sind die Gruppen zur Beschränkung der Sichtbarkeit vorhanden. Sie werden hier genauso wie in der Eingabe über das Fenster Sichtbarkeit gesteuert.
 - Neben der positionsweisen Steuerung der Sichtbarkeit durch Verwendung von Gruppen steht für die interaktive grafische Ergebnisausgabe die Ausschnittfunktion zur elementweisen Steuerung der Sichtbarkeit zur Verfügung.



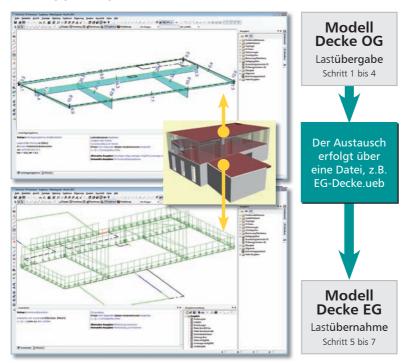
4.6 Bildoperationen

MicroFe verfügt über zahlreiche Arbeitstechniken, wie Sie die Darstellung im Ein- und Ausgabemodul verändern können, um optimale Zeichnungsausschnitte für die Konstruktion oder die Darstellung in der grafischen Ausgabe zu erhalten.

Über die Funktion Zoom lässt sich das dargestellte Tragwerk auf einen Bereich vergrößern, den Sie selbst definieren können. Hierzu wird eine Box aufgezogen, die den neuen dargestellten Zoom-Ausschnitt des Tragwerks festlegt.

Über die Funktion Zoom Alles können Sie die Gesamtansicht des Tragwerks wieder herstellen.

- MicroFe stellt auch Funktionen bereit, mit denen Sie Ausschnitte per Tastendruck stufenweise vergrößern oder verkleinern und dabei den Referenzpunkt der Bildoperation bestimmen können. Die angesprochenen Zoom-Funktionen werden über den Zahlenblock der Tastatur ausgeführt. Die Tastenbefehle haben eine direkte Wirkung auf die Lage oder die Größe des Zoom-Ausschnittes. Voraussetzung ist, dass der Num-Modus des Zahlenblocks aktiv ist.
- Der Zahlenblock der Tastatur sieht ebenso Befehle vor, mit denen Sie Ausschnitte im aktuellen Arbeitsfenster verschieben können.
- Der Bildausschnitt kann auch mit Hilfe des R\u00e4dchens Ihrer Maus eingestellt werden: Ctrl+R\u00e4dchen (Vergr\u00f6\u00dfern, Verkleinern), Umsch+R\u00e4dchen (Hoch/Runter), Alt+R\u00e4dchen (Links/Rechts).


Tipps & Tricks

Weitere Informationen zu den Tastenbelegungen finden Sie in der Broschüre Tastaturkürzel oder über den Befehl Hilfe → Tasten.

47 Lasten automatisch übernehmen

Auflagerkräfte aus anderen Modellen lassen sich auch automatisch als Lasten übernehmen. Damit die Übergabe der Lasten modellübergreifend funktioniert, müssen diese zuvor in eine Datei geschrieben werden. Diese Datei kann dann im entsprechenden Modell einwirkungsgetreu eingelesen und verarbeitet werden.

1. Es sollen im folgenden Beispiel die Lasten von der Kellerdecke an die Bodenplatte übergeben werden. Öffnen Sie über den ProjektManager das FE-Modell KG-Decke. Für das Beispiel wird davon ausgegangen, dass die Kellerdecke schon alle Lasten aus den oberen Geschossen durch Lastübernahme beinhaltet

Schritt für Schritt

- 2. Doppelklicken Sie im Ausgabenbaum im Bereich Übergabe auf die Ausgabe Lastübergabe. Es erfolgt die Lastausgabe in den mb-Viewer. Hierbei wird eine Datei angelegt, auf die Sie später im Rahmen der Lastübernahme zugreifen können.
- 3. Öffnen Sie jetzt das FE-Modell Bodenplatte. Führen Sie den Befehl Belastung → Lastübernahme → Durchführen aus und wählen Sie im Dialogfenster die Datei mit den gespeicherten Lasten der Kellerdecke aus.
- 4. Öffnen Sie die Datei, werden die Lasten in das FE-Modell Bodenplatte übernommen. Ein grünes Rechteck in der Zeichnung weist darauf hin, dass Lasten an die Bodenplatte weitergeleitet wurden.
- 5. Passen Sie im Dialogfenster Einwirkungen (siehe die Kapitel 2.7) ggf. noch die Zuordnung der Lastfälle aus der Übernahme zu den Einwirkungen an.

Impressum

Geschützte Kennzeichen, urheberrechtlich geschützte Werke und sonstige gewerbliche Schutzrechte sind im Handbuch nicht besonders kenntlich gemacht. Die fehlende Kenntlichmachung berechtigt nicht zur Annahme, dass diese frei verwendbar sind.

Software und Dokumentation wurden mit der größtmöglichen Sorgfalt erstellt. Da Fehler sich jedoch nicht gänzlich ausschließen lassen, kann für die Fehlerfreiheit keine Garantie übernommen werden. Anregungen und Hinweise nehmen wir gerne entgegen.

Copyright © 2012 mb AEC Software GmbH

Europaallee 14

67657 Kaiserslautern

Alle Rechte vorbehalten. Die Nutzung ist nur innerhalb der vorgegebenen Grenzen des deutschen Urheberrechts und der Allgemeinen Geschäfts- und Lizenzbedingungen zulässig. Insbesondere das Einstellen in elektronische Informationssysteme und die Vervielfältigung ohne vorherige Erlaubnis sind unzulässig.

Alle Angaben/Daten wurden nach bestem Wissen erstellt, jedoch ohne Gewähr für Vollständigkeit und Richtigkeit.

Screenshots wurden mit der Version mb WorkSuite 2012 erstellt.

Leserkommentar

Dieser Schnelleinstieg soll Ihnen helfen, einen ersten Zugang zu MicroFe zu gewinnen, um das Programm zur Bewältigung Ihrer Aufgaben nutzbringend einzusetzen. Deshalb interessieren uns Ihre Kommentare, Änderungsvorschläge und Anregungen zu diesem Handbuch.

Wir würden uns daher freuen, wenn Sie uns telefonisch oder per E-Mail Ihre Meinung und Kritik zukommen lassen.

Sie erreichen uns wie folgt:

Telefon: 0631 / 3 03 33 11
Telefax: 0631 / 3 03 33 20
E-Mail: info@mbaec.de

